COMMERCIAL IN CONFIDENCE	NOMBER: PL 0231/0072				
JH/ 15 APPLICATION FOR A PRODUCT LICENCE	PRODUCT NAME: HEAT TREATED HIGH POTENCY FACTORATE				
PROPOSED LICENCE HOLDER: Armour Pharmaceutical Co Ltd St Leonards House St Leonards Road	THERAPEUTIC CLASSIFICATION: Blood Product				
Eastbourne	RECEIVED: 22.2.84 P.S.M: 12.3.84				
East Sussex	MEETING: 4 July 1984				
MANUFACTURER OF DOSAGE FORM: Armour Pharmaceutical Company	Safety of Medicines				
PO Box 511 Kankakee Illinois 60901 USA	SUB-COMMITTEE ON: Biologicals				
	CONSIDERATION BY OTHER COMMITTEES:				
LEGAL STATUS: POM					
	ASSESSED BY:				
SALE/SUPPLY: Hospitals	Dr K Fowler and Dr J Purves				

1. Product Particulars

1.1	Name of Product:	Heat-Treated High Potency Factorate.
1.2	Pharmaceutical form:	Lyophilised powder for intravenous infusion after reconstitution with Water for Injections BP 250 i.v./vial; 500 i.v./vial; 1000 i.v./vial; 2000 i.v./vial
1.3	Active constituents:	Human Antihaemophilic Factor.
1.4	Uses:	Treatment of classical Haemophilia A.
1.5	Recommended dose and dosage schedule:	Dosage is in accordance with the needs of the patient. Full recommendations for general dosage are provided in the data sheet.
1.6	Contra-indications Precautions and Warnings:	No known contra-indications.

2. Data Sheet

The Company propose that the main body of the data sheet text used for High Potency Factorate (APPENDIX 1) will be retained for the heat treated product but the following statement will be included under 'Further Information', 'Experimental Studies have shown that heat-treatment of Antihaemophilic Fraction may remove or reduce the risk of transmission of non-A non-B hepatitis. Consequently this product has been subjected to heat treatment procedures during manufacture.

3. Background

3.1 General Information

Within the last year or so there has been evidence of a growing interest by Companies to heat treat Factor VIII, for a variety of reasons. This trend has no doubt been influenced as a result of the approval given by the FDA to American manufacturers of this product, to heat treat it under specified conditions.

CTX's have been granted to both Travenol and Armour Pharmaceuticals Co Ltd to undertake clinical studies using Factor VIII, which has been subjected to heat treatment, as follows:

- i. Travenol yophilised form heat treated at 60°C for 72 hours.
- ii. Armour lyophilised form heat treat at 60°C ± 1°C for 30 hours and not more than 31 hours.

Product Licence applications to permit the inclusion of an additional heat treatment step have now been received from three manufacturers, namely Travenol, Hoechst and Armour (this application). The first of these companies applied to vary its existing Product Licence to include the additional heat treatment stage. This application was considered by the Biological Sub-Committee and the Committee on Safety of Medicines at their respective meetings in September of last year. The Main Committee was unable to recommend that the product licence for this preparation be varied as indicated in the application. The reason given are shown at APPENDIX 2. Toward the end of 1983 Hoechst applied for a product licence for heat treated Factor VIII. The heat treatment stage used in the manufacture of this product involves redissolving the Factor VIII in a "buffer with added stabilizers and heating at 60°C for 10 hours". This application was considered by the Biological Sub-Committee and the Main Committee at their respective meeting in March this year. The Main Committee advised the grant of a Product Licence for this preparation on condition that certain points raised were satisfactorily resolved. Details of these points are given at APPENDIX 3. This Product Licence has not yet been granted.

3.2 Information presented by Armour

The use of Dried Factor VIII Fractions in replacement therapy leads in some cases to the development of hepatitis (mainly hepatitis B or non-A non-B hepatitis) in certain patients as a result of occasional transfer of these viruses from infected donors. Diagnostic tests are available specifically for hepatitis B and although these are not infallible their use has led to a reduction in the incidence of the disease in haemophiliacs. No such test exists for detection of non-A non-B hepatitis virus(es) which thus cannot be screened. Pasteurisation has been used successfully as a means of destroying viruses in certain blood products (eg Albumin solutions) but early studies with Factor VIII solutions indicated a dramatic loss of potency during such procedures. More recently it has been established that heat-treatment of the finished, lyophilised product under controlled conditions can reduce the viability of, specifically, non-A non-B hepatitis virus without significant effect on the potency of the material. The effect of this treatment on the viability of Hepatitis B virus is less clear and studies indicate that heat treatment is not effective. Nevertheless the possibility of achieving reduction of risk of transmission of non-A, non-B hepatitis by heat treatment is considered to be of significant advantage since this, coupled with the screening tests already available and used for detection of hepatitis B provides improved safety potential in therapy with these products. Heat treated Factorate products are currently undergoing registration in the United States and the heat-treated High Potency product is already on sale in Germany.

	DOSAGE FORM	
FORMULATION(S)		COMMENT
Description : Page(s) - 11		
Vial containing a white to pale	yellow lyophilised cake	
for reconstitution with sterile	'water for injections'.	
Complete formula : Page(s) - 11		
ACTIVE CONSTITUENT	PER VIAL	
Dried Human Antihaemophilic	Nominal, 250, 500,	Molarity of other
Fraction	1000 and 2000 i.u.	constituents in existing
OTHER CONSTITUENTS		licence (PL 0231/0044)
Glycine USP	0.2M	0.31 Molar
Sodium Chloride USP	0.04M	0.15 Molar
Sodium Citrate USP	0.04M	0.01 Molar
Sodium Heparin USP	nmt 1 unit/ml	NMT 30 units/vial
	(reconstituted	
	solution)	
Container(s) : Page(s) - 11		
VIALS : Type 1 glass (30ml, 50ml	, 50ml 100ml)	
CLOSURES: Grey butyl rubber sto	pper with an aluminium	
sea.		
MANUFACTURE	Page(s) - 12	
Fraction are provided under Sect of this application. The bulk f sterilised by filtration through sterilisation filter assemblies.	ion 8 of Part II Addendum inished material is Millipore or Pall 0.22µ	
In each case the assembled filte at 126°C for 45 minutes before u solution is collected into a sta receiver tank previously autocla 121°C.	r housing are autoclaved se and the filtered bulk inless steel bulk ved for 60 minutes at	Details have not been given of: i. sterilization of containers ii. freeze-drying process
		iii. in-proces moisture
The clarification/sterilisation	assemblies are pre-wetted	limit.
with sterile Water for Injection is carried out before filtration Sterile filtration is carried ou (initially 0.5 - 1 psi increasin psi) to maintain a steady flow.	s and a pressure hold test (cartridge assemblies). t under nitrogen g to approximately 5 - 6	What measures are taken to minimise the potential for contamination of the vial needs with organisms from
Appropriate bubble point tests a of filter at the end of filtrati	re conducted on both types	the water bath? Where are the details of the validation process to
The finished, sterilised bulk li- into sterilised vials then froze	quid is filled aseptically n, dried from the frozen	justify the choice of this particular heat treatment process?
state under vacuum, stoppered un	der vacuum and sealed.	

DOSAGE FORM	
QUALITY CONTROL	COMMENT
Specifications of constituents : Page(s) - 13	
Specifications controlling raw materials used in the manufacture of Heat-Treated High Potency Factorate are identical to those used in the manufacture of the non heat-treated product (PL 0231/0044). Vd II	A medical view will be given on the suitability of the specifications cited for source plasma.
 Source Plasma (Human), Flash frozen P 1-9 Rehsorptan, aluminium hydroxide, sterile suspension Sodium Heparin Injection USP 1,000 units/ml Sodium Heparin Injection USP 5,000 units/ml Sodium Heparin Injection USP 10,000 units/ml Sodium Citrate USP reagent Sodium Bicarbonate USP, pyrogen free Amino-acetic acid USP (Glycine) Glacial acetic acid Reagent grade USP 	
In-process control : rage(s) - 13	
None reported.	Specification approval sheets have not yet been
Details of the specifications for the 250 i/vial and 2000 i/vial presentations are at pages of this report.	signed and approved for use by the Director Quality Control Regulatory Affairs Manager Head of Pharmaceutical Sciences Chief Analyst Quality Control Manager
DEVELOPMENT PHARMACEUTICS	
Formulation studies : Page(s) - 26	
The analytical control procedures applied to Heat-treated High Potency Factorate are identical to those already applied to the non-heated product licensed PL 0231/0044.	 These studies included i. stability after heat treatment
1. Experimental studies on heat-treated material have failed to show any detrimental effect attributable to the heat-treatment procedures. Copies of reports on these	ii. effect on thorombin activation
 studies are supplied in Section 9 of this application. Full analytical data after heat-treatment High Potency Factorate. The data are presented overleaf and 	<pre>iii. immunochemical comparison of heat-treated Factorate.</pre>
indicate no significant departure from the results of similar assays on non-heat-treated material.	2. Batch analyses of non-heat treated material should have been included to facilitate comparison.

ť.		OUALITY CONTROL DEPARTMENT		
		SPECIFICATION		
			No.	848/1
an a	HEAT-TREATED		Data	September, 198
	[DRIED FACTOR VIII FI	RACTION B.P.]	а <mark>Зу ста</mark>	C.G. Blatchford
			Page	1 of 3
	DESCRIPTION			930101999000000000000000000000000000000
	A white to pale yellow I cap, for reconstitution v	yophilised cake in a 30 ml vial closed with a b with 10 ml Water for Injections 3.P.	prown n	ion-traumatic flip-
	TEST	SPECIFICATION		METHOD
	*Appearance	Complies with description and produces a c solution on reconstitution.	clear	
	*Mammalian Protein	Human positive Bovine, ovine and porcine negative		351/K
	Potency	Not less than: 200 iu/vial 20 iu/ml reconstituted		8.P.
	*pH	6.8 - 7.4 reconstituted		53/K
	Moisture	Not more than 0.5%,w/w		43-D(K)
	Aluminium	Not more than 50 µg per vial		995/K
	Citrate	Not more than 55 m mol/L reconstituted		1402/K
	Fibrinogen	Not more than: 120 mg/vial, (80% of total protein) 12 g/L reconstituted.		994/K
	Heoatitis S _s Antigen	Negative		379/K or 1410/K
	Heparin	Not more than 10 iu/vial		1073/K
	Isoagglutinins	Not more than 1:256 without predilution and typically less than 1:54 when tested against Anti-A and Anti-8.		38 6/ K ar 1426/K
	Total Protein	Not more than: 150 mg/vial 15 g/L reconstituted		993/K
243ba Xida				
		Q.C. Manager GRO	-C	

	QUALITY CONTROL DEPARTMENT SPECIFICATION			
		No.	348/1	
HEAT-TREATED		Date	September,	1983
[DRIED FACTOR VIII F	RACTION B.P.]	By	C.G. Blatch	nford
		Page	2 of	3
TEST	SPECIFICATION		METHOD	
Sodium	Not more than 200 m mol/L reconstituted		1301/K	
Solution Time	Not more than 20 minutes, typically less than 10 minutes		1343/K	
Sterility	Passes Test		303/K	
Abnormal toxicity Mouse	Passes Test		963/K	
Guinea pig	Passes Test		than 538 iu	l/Kg]
Pyrogens	Passes Test		208 [10 iu/Kg]	
	방법에 가지 않는 것이 가지 가지 않았다. 사실 방법에 가지 않는 것이 가지 않았다. 사실 방법에 가지 않는 것이 같은 것이 많이 있는 것이다.			
*These tests are carrie	ed out at RHC (UK) Limited, Eastbourne.			
4597 Auronauto - Alfred - Alfr				

ARMOUR PHARMACEUTICAL COMPANY LIMITED

England

349/1

1

September, 1983

3

C. Blatchford

of

No.

Oate

87

Page

20

QUALITY CONTROL DEPARTMENT

SPECIFICATION

HEAT-TREATED HIGH POTENCY FACTORATE, 500 iu/vial [DRIED FACTOR VIII FRACTION B.P.]

DESCRIPTION

Eastbourne

A white to pale yellow lyophilised cake in a 50 ml vial closed with a brown non-traumatic flipcap, for reconstitution with 20 ml Water for Injections B.P.

TEST	SPECIFICATION	METHOD
*Appearance	Complies with description and gives a clear solution on reconstitution.	F
*Mammalian Protein	Human positive Bovine, ovine and porcine negative.	351/K
Potency	Not less than: 400 iu/vial 20 iu/ml reconstituted	1 8. P.
*pH	6.8 - 7.4 reconstituted	53/K
Moisture	Not more than 0.5% w/w	43-D(K)
Aluminium	Not more than 100 µg per vial	995/K
Citrate	Not more than 55 m mol/L reconstituted	140 2/ K
Fibrinogen	Not more than 240 mg per vial (80% of total protein) 12 g/L reconstituted	1344/K
Hepatitis B _s Antigen	Negative	379/K or 1410/K
Heparin	Not more than 20 iu per vial	1073/K
Isoagglutinins	Not more than 1:256 without pre- dilution and typically less than 1:64 when tested against Anti-A and Anti-8.	386/K or 1426∕K
Total Protein	Not more than: 300 mg/vial 15 g/L reconstituted	993/K
	GRO-C	
	G.C. Manager	

ARMOUR PHARMAC	EUTICAL	COMPANY	LIIVIITED
----------------	---------	---------	-----------

Eastbourne

England

		No.	549/1	
FAT-TOFATED		Date	Sentembra 1	28:3
HIGH POTENCY FACTORAT	rE, 500 iu/vial		September, 1.	
DRIED FACTOR VIII FRAC	TION B.P.]	Ву	C. Blatchford	
		Page	2 of 3	
			7777278140494027998539999009262878789255559984898998648648	
TEST	SPECIFICATION		METHOD	
Sodium	Not more than 200 m mol/L :	reconstituted	1301/K	
Solution Time	Not more than 20 minutes, ty less than 10 minutes	pically	1343/K	
Sterility	Passes Test		303/K	
Abnormal toxicity				
Mouse Guines Pig	Passes Test Passes Test		963/K [Inject >538 iu/Ka]	
Pyrogens	Passes Test		208/K	
* These tests are carried ou	ut at RHC (UK) Limited, Eastbou	rne.		
Menonalization - energy and its included and application and an application and an application and an application and a second		GRO-C	มหลงชีวี มีชีวิตรีอยีมีรู้อย่างอาจออยุร์อยีวิทศาสตรฐานกลุกทางการและสะ	-
	g.C. Manager			

ARMOUR PHARMACEUTICAL COMPANY LIMITED 23 England

Eastbourne

٩

		No.	350/1
HEAT-TREATED	ORATE, 1000 iu/vial	Date	September, 19
(DRIED FACTOR VIII F	RACTIÓN B.P.]	Ву	C.G. Blatchfor
		Paga	1 of 3
DESCRIPTION			
A white to pale yellow cap, for reconstitution	lyophilised cake in a 50 ml vial clos with 30 ml Water for Injections 8.P	ed with a brown n	on-traumatic fli
TEST	SPECIFICATION		METHOD
*Appearance	Complies with description, and g solution on reconstitution.	jives a clear	
*Mammalian Protein	Human positive Bovine, ovine and porcine negati	ive	351/K
Potency	Not less than: 800 iu/vial 25.5 iu/ml reco	instituted	8.P.
*pH	6.3 - 7.4 reconstituted		53/K
Moisture	Not more than 0.5% w/w		43-D(K)
Aluminium	Not more than 180 µg per vial		995/K
Citi ate	Not more than 55 m mol/L reco	nstituted	1402/K
Fibrinogen	Not more than: 480 mg/vial, (80% of total g 16 g/L reconst	rotein,) ituted.	994/K
Hepatitis B _s Antigen	Negative		379/K or 1410/K
Heparin	Not more than 30 iu/vial		1073/K
Isoagglutinins	Not more than 1:256 without pr and typically less than 1:54 whe against Anti-A and Anti-B.	edilution n tested	386/K or 1426/K
Total Procein	Not more than: 500 mg/vial 20 g/L reconstit	uted	993/K
			and and a second se Second second second Second second

	QUALITY CONTROL DEPARTME SPECIFICATION	ENT /			
			No.	350/1	
HEAT-TREATED		RECEIPTION OF A CONTRACT OF A	Date	September	, 1983
[DRIED FACTOR VIII	FRACTION B.P.]		By	C.G. Blatc	hford
			Page	2	3
		Beneficial and a second se			
TEST	SPECIFICATION			METHOD	
Sodium	Not more than 200 m mol/L recon	stituted		1301/K	
Solution Time	Not more than 20 minutes, typical less than 10 minutes	ily Second		1343/K	
Sterility	Passes Test			303/K	
Abnormal toxicity Mouse Guinea pig	Passes Test Passes Test			963/K [Inject > 538 iu/Kg]	
Pyrogens	Passes Test			208 [10 iu/⊬g]	
* These tests are ca	rried out at RHC (UK) Limited, Eastbo	urne.			
				a a an	

WITN6406036_0010

ARMOUR PHARMACEUTICAL COMPANY LIVITED England

Eastbourne

	QUALITY	CONTROL DEPA	RTMENT		
		SPECIFICATION			
				No. 351/1	
HEAT-TREATED		10 iu/viat		Date Septem	ber, 1983

, NO			NI	3939646	网络白豆属	A Constant	1920 A. (1997)	1982			Marthe See	1.000
	(nr	I COL	10	$\wedge \cap T$	$^{\circ}$	ATT	60	A C	π	V P	01	
	LUP	سلستك	1 5 1	401	Un.	YUL	- C - D	mu	1101	X ~~*		
							반영감 순간한				영양 문문	

	C.G.	Bla	tchfo	rd
Page	1	of	3	

17

DESCRIPTION

A white to bale yellow lyophilised cake in a 100 ml vial closed with a brown non-traumatic flip-cap, for reconstitution with 60 ml Water for Injections B.P.

1251	SPECIFICATION	METHOD
*Appearance	Complies with description and gives a clear solution on reconstitution.	
*Mammalian Protein	Human positive Bovine, ovine, and porcine negative.	351/K
Patency	Not less than: 1600 iu/vial 26.7 iu/ml reconstituted	B.P.
*:H	6.3 - 7.4 reconstituted	53/ ×
Moisture	Not more than 0.5% w/w	43-0(K)
Aluminium	Not more than 300 µg per vial	995/K
Citrate	Not more than 55 m mol/L reconstituted	1402/K
Elbrinogen	Not more than: 960 mg per vial (80% total protein) 16g/L reconstituted	1344/K
Hepatitis B _s Antigen	Negative	379/K or 1410/K
Heparin	Not more than 50 iu per vial	1073/K
Isoagglutinins	Not more than 1:256 without pre- dilution and typically less than 1:64 when tested against Anti-A and Anti-8.	386/K 01 1426/K
Total Protein	Not more than: 1200 mg/vial 20 g/L reconstituted.	993/K

G.C. Manager

U.

Eastbourne			England	1 ð
	QUALITY CONTROL DEPARTME SPECIFICATION	NT		
		Nu.	351/1	
HEAT-TREATED		Date	September, 1	983
DRIED FACTOR VIII	FRACTION 8.P.]	Ву	C.G. Blatchfo	ord
		Page	2 of 3	
TEST	SPECIFICATION		METHOD	
Sodium	Not more than 200 m mol/L recon	stituted	1301/K	
Solution Time	Not more than 20 minutes, typical less than 10 minutes	lly	1343/K	
Sterility	Passes test		303/K	
Abnormal toxicity Mouse Guinea Pig	Passes test Passes test		963/K [Inject >538	
Pyrogens	Passes test		iu/Kg] 208/K	
Inese tests carried	are carried out at RHC (UK) Limited,	, castbourne.		
and the second s Second second secon second second sec				

WITN6406036_0012

DOSAGE FORM

DEVELOPMENT PHARMACEUTICS

Formulation studies : Page(s) - 26 (Continued)

3. Additional studies have been conducted on heattreated High Potency Factorate in Germany where the product is already on sale through the heat-treatment process is applied to the standard product at Armour Pharma, Eschwege, Germany. A translation of the findings of a variety of tests applied to a batch of material before and after heat-treatment is attached (see next page).

4. Additional supporting evidence that heat-treatment does not affect Factorate material is provided by the results of analyses of three batches of Factorate (PL 0231/0038), before and after heat-treatment, copies of which are attached. These batches are destined for use on clinical studies conducted under CTX 0231/0070A (see two pages on).

5. As Factorate products are administered intravenously and the site of action is in the circulation, the material is delivered directly to its site of action and bioavailability considerations are not considered relevant.

3. what are the criteria of this heat treatment.

4. Using the criteria cited!

<u>HP FACTORATE</u> - Analysis before and after heat-treatment (study conducted at Armour Pharma, Germany)

Batch No.: V31833

.

Ì

j

I STATE

N

PARAMETER	BEFORE HEAT-TREATMENT AN	TER HEAT-TREATMENT
AHF Potency 2 stage assay	220iu/vial	22ጋiu∕vial
1 stage assay	190iu/vial	190iu/vial

Chromatography:

HPLC Separation into 7 peaks with icentical qualitative and quantitative profiles

CAF Electrophoresis Identical pattern

UV Spectrum No new absorption peaks following the treatment.

Solution Time 4 minutes 4 minutes

											************	And and the						i kan		T.		and the second se	And the second se	19
								COMPAL	RISON	of Anal	YSIS OF	FAUT	ORATE _	<u>11{E AN</u>	<u>10 Pa</u>	<u>ST HE</u>	<u>AT., TRI</u>	<u>- A TME N</u>	T					
		J	est							X23102 He	at Trea	ted			XZ	24302 He	at Tr	eatod			,	(25203 He	at Trea	ted
	Assa	ау			12			20	10 5 D		195 '(190)	R. S.	200			225 (220)		20	0		210 (;	205)
	Free Toxi	edom f lcity	rom	Abnorn	1a 1			Pa	39		Pass			Pass			Pass			Ра	55 5		Pass	
	Pyrc	ngene						Pas	38		Pass			Pass			Pass			Pa	95		Pass	
Ч	i Hepa	rin 1	u/vi/	al				1	3 1946)		4			2			5			9.45.9 (2002)	2.		6	
•	Tota	il Pro	tein	mg/l				9.7	1		14.5			12.3			16.4			19	. 5		22.4	
	Clot	table	Pro	tein m	g/1			6.6	3 37		6.4			6.9			7.3		19 ANA	9.	3		11.4	
	pH u	ipon r	econ	stitut	Ion	생각		7.5	i		7.4		1-23.93(51)	7.5			7.3			7.1	6	- 12 - 12	7.3	
	Solu	ition	t1me	min				<u>j</u> 2			2			3			З				3		6	
	laso	agglu	tinir	ns Ant	1-A			1:3	32		1:16			1:1		No	measu	rable	and the second second	1:	128		1:128	
																	Titre	1						
				Ant	1-8		No	Measu Tit	rable	No me	asurab: Titro	le .		1:8			1:8			1:3	32		1:16	
	Hone	titia	<u>в</u> . А	htigo	n			Mogat	340	No	astino		61.	1999 (1997) 1999 (1997) 1999 (1997)		ALC.			1	Novet			an an an an an an an	
	Citr	ato m	1/11+		na Ziero in ent Ziero in ent			Negar	108	IVE	gative			agativ	18	146	gativ	e		Negar	.108	ſ	egalive	1
	Moto		17					0			0.0			12			8			10)		10	
1) -2	11019	rur.e 4						U.1			U.3			υ.Ο			U. 2			0.1			0.2	

లు కా

DOSAGE FORM						
STABILITY						
Batches examined : Page(s) - 32-39						
V 28602 (A 1607 - 024)						
V 44106 (A 1607 - 020)						
Conditions of Storage	Results					
1. Refrigerated (2-8°C)	A. Potency					
2 Room Temperature $(15-30^{\circ}C)$						
3. Elevated lemperature (35-6)						
	B. Potency 3-Hour Post Reconstitution					
	C Solution Time/Appendix					
	C. Solution lime/appearance					
CONCLUSIONS MADE BY COMPANY						

potency significantly.

It is concluded that, apart from a slight initial drop in potency as a result of heat treatment, the conditions of heat treatment do not affect the stability or shelf-life of the product.

	chemistry of the brug Substance	Comment
	Pharmaceutical Name:	
	1.1 Dried Human Antihaemophilic Fraction BP.	
	1.2 U.S. Adopted Name : Antihemophilic Factor.	
	1.3 Other Names : Factorate High Potency Factorate	
2.	Description	
	2.1 A white to pale yellow lyophilised cake.	
	Method of Manufacture (Pages 42 - 45 of application	
	Brief details of the method of manufacture of this product have been copied at pages of this report.	
	Essentially the method of manufacture is that which has been seen before for High Potency Factorate (PL 0231/0044), but with one additional step and that is,	
	Heat treatment of the product, which is lyophilized and sealed in vials under vacuum, in a water-bath at $60^{\circ}C \pm 1^{\circ}$ for thirty hours	
۴.	Development Chemistry	
	The Company has introduced this heat-treatment process "as a potential means of reducing transmission of non-A, non-B hepatitis virus" and decided "In view of this additional process and the potential effect such heat-treatment might have on the Factor VIII molecule, a series of experiments have been carried out to compare the heat-treated material with non-heat-treated material. Three such studies have been undertaken details of which are shown in the application,	
	4.1 Stability After Heat-Treatment (P 46 - 48) It is stated by the Company (P 48) that "previous experiments have indicated that heating Generation II Factorate to 60°C for 24 hours may not be sufficient to destroy Hepatitis B. Therefore, a longer period of heating may be necessary. This experiment is designed to detect changes, if any, in AHF activity when Factorate is heated at 60°C/72 hours in the dry state.	Page 48 should be read befor Page 47!!! The objectives and conclusions of this experiment dre not entirely clear : very little can be concluded from data presented. It is of interest to note that the Co. considered "60°C/24 hours may not be sufficient to destroy Hepatitis B".

17.

WITN6406036_0017

8. MANUFACTURE

The basic manufacturing procedure is essentially the same as that used for the existing High Potency Factorate Product (PL 0231/0044) as described in our variation application submitted in February 1980.

After lyophilisation and sealing of the vials, the vials are brought to $60^{\circ}C \pm 1^{\circ}C$ in a water-bath and held at this temperature for a period of thirty hours.

For completeness the full manufacturing description as depicted in our previous variation, together with the heat-treatment stage are included as follows:

High Potency material is manufactured from fresh frozen, human plasma which, when tested, complies with the Raw Material Specification for source plasma (Specification 3029 supplied separately in a manual (dated October 1983) for specification and methods common to all Factorate products) and is negative for Hepatitis B surface antigen activity. A cryoprecipitate is isolated from thawed human plasma and dissolved at 25°C \pm 5°C in glycine-saline buffer containing not more than 3 u/ml Sodium Heparin USP. The pH of the solution is adjusted to 6.4 with 0.1 M acetic acid, cooled, centrifuged and pH adjusted to 5.9 with 0.5 Sodium hydroxide solution. Impurities are adsorbed onto an added quantity of aluminium hydroxide suspension, subsequently removed by centrifugation at approximately 15°C after which the centrifugate is clarified by filtration. The clarified bulk material 's mixed with sodium citrate and sodium chloride and stirred to dissolve the latter. The bulk is cooled to O^oC and 95% Alcohol added. After alcohol addition the bulk is cooled to -1 to -2° C and stirred for a minimum period of 20 minutes before centrifugation to remove precipitate. The precipitate is resuspended in citrate/saline/glycine buffer and held frozen for a minumum period of six hours before rethawing at 34°C and bringing to final volume with saline glycine buffer.

The pH of the solution is adjusted to 5.8 - 5.9 with 0.5 M acetic acid at controlled room temperature. The solution is cooled to approximately 3°C, held at this temperature for ninety minutes and centrifuged. The supernatant is filtered through a series of Millipore filters or a Pall cartridge assembly to clarify. The pH of the finished solution is adjusted to 7.0 with 0.5M NaOH and the solution sterile filtered through Millipore or Pall cartridge assemblies with smallest pore size 0.22μ .

Manufacturing Process for Antihaemophilic Factor (Human), (High Potency) PHASE A - Collection and Storage of Human Plasma PHASE 5 - Isolation of Cryoprecipitate a) Thawing at $C^{\circ}C + 2^{\circ}C$ b) Centrifugation at 1°C + 2°C ----> Cryo-Poor Plasma Supernatant PHASE C - Dissolution of Cryoprecipitate in Glycine-Saline Buffer Containing Heparin a) pH adjustment b) Centrifugation/Filtration ——> Presipitate <u>diamended</u> c) pH adjustment PHASE D - Aluminium Hydroxide Adsorption (Sterile 2% Suspension Added). a) Storing at 15°C + 5°C D) Centrifugation and Filtration ------> Precipitate discarded PHASE E - Statilisation and Alconol Precipitation a) Sodium Citrate, Sedium Chloridg additions b) Addition of Ethanol at 2°C + 2°C at CTC + 3TC PHASE G - Resuspension of Precipitate in Citrate-Saline-Glycine Buffer a) pHaciusted 7.8 - 0.2 (below -40°0) on- PMASE - - of adjustment followed by cooling and filtration through memorane c⊃ filter. a) pm adjustment to 5.6 <u>-</u> 0.3 (at 15-30⁹0) Cool solution to B^CC 7 5^CC ----- Precipitate discarded 5) c) of planified solution edjusted to 7.2 \pm 0.4 with 0.5 M Socium Tydroxide PHASE 1 - Clarification through a Memorane Filtration Assembly (see next page)

19.

FLOW DIAGRAM (cont.)

14

WITN6406036 0020

PHASE J - Sterile Filtration into Sterile Holding Tanks (Sample submitted for Bulk Sterility Testing)

PHASE K - Filling (Under Constant Positive Pressure)

PHASE L - Lyochilisation (Under vacuum) and Sealing of Vials for Inspection and Storage at 2-8 C or colder.

PHASE M - Heat-treatment in a water bath at 30° C \pm 1° for thirty hours.

9. DEVELOPMENT CHEMISTRY

Heat-treated High Potency Factorate differs from the licensed High Potency Factorate product only in the heat-treatment process carried out on the finished product. This stage has been introduced as a potential means of reducing transmission of non-A, non-B Hepatitis virus. In view of this additional process and the potential effect such heat-treatment might have on the Factor VIII molecule, a series of experiments have been carried out to compare the heat-treated material with non heat-treated material. copies of reports of these experiments are provided in this section.

NB High Potency Factorate material is referred to as Factorate $\overline{\text{Generation II}}$ material in these studies as this is the trade-name for this product in the USA.

9.1. Stability After Heat-Treatment

Long-term stability studies on heat-treated High Potency Factorate are on-going and the results of testing after storage for up to one year are presented in the stability section of this application.

In addition to these results, an experiment has been conducted to determine the comparative potency of heated (60°C for 72 hours) and non heat-treated product for periods up to 25 days after reconstitution. The results of these tests are presented in study PFR-81-010 presented overleaf. No significant differences in potency were observed between the two products.

9.2. Effect on Thrombin Activation

Antihaemophilic Fraction is known to cause a pronounced increase in the activity of thrombin although the mechanism of this action is unknown. The attached report, PFR-82-050 investigates the comparative effects of heated and non heat-treated High Potency Factorate to determine whether heat-treatment has any effect on this action of Antihaemophilic Fraction. Assessments of relative activity by the one stage PTT assay indicated that there was no significant difference between the two materials.

9.3. Immunochemical Comparison of Heat-Treated Factorate

Immunochemical experiments have been carried out with rabbit plasma containing antibodies to heated and non heat-treated Factorate proteins, in order to determine whether heat-treatment has any demonstrable effect on these proteins. An account of one such experiment is provided under study No. PFR-82-043 attached. Evaluation of the results for the possible development of neoantigens as a result of heat-induced modification of protein structure indicated that this had not taken place.

	Chemistry of the Drug Substance	Comment
		No validation study has been presented to justify the time/temperature chosen for the heat treatment.
4.2	Effect of Thrombin Activation (P 49 - 53) The objective of this experiment was to "determine whether conditions that may be suitable for pasteurisation of Factorate affect the characteristics of its activation by Thrombin".	
4.3	Immuno-chemical comparison of Heat-Treated Factorate (P 54 - 61). The objective of this experiment was a "heat Factorate in the drug state at 60°C for 24 hours and then immunochemically determine if the proteins have been altered by this treatment."	<pre>It should be noted that heat treatment for the product to be marketed is 60°C ± 1°C for 30 hours. P 58 two dimensional electrophoresis traces too poor to interpret! P 59 Gel diffusion results impossible to interpret. Note amended discussion on Page 6!! On Page 61 it is cited that "cross-over studies with the two antigen preparations and the various antisera essentially gave the spare IEP patterns. These results should be</pre>
_		presented.
Impu The Fact non deta show resu spec incl sodi of w addi and assa impu mono	rities (P 62) <u>impurity profile of Heat-treated High Potency</u> <u>orate is predicted to be as the existing</u> <u>heat-treated product.</u> The experiments iled in the previous section have failed to the generation of any modified structure as the lt of heat-treating. The finished product ifications for High Potency Factorate products ude tests for aluminium citrate, heparin and um which are added during processing and traces hich are residual in the finished product. In tion endogenous impurities such as fibrinogen isoagglutinins are also present and subject to y. Where appropriate the limits of these rities comply with the requirements of the BP graph for dried Factor VIII Fration.	The Sub-Committee may wish consider the suitability of the tests and results prese in support of the Company's prediction.

WITN6406036_0022

	Chemistry of the Drug Substance	Comment
6.	Specification (P 63) The specification of the drug substance is the same as that presented for the finished dosage form, presented earlier in this report and given at Pages 14 -25 of the application.	It should be noted that the specification approval sheet at Pages 16, 19, 22 and 25 have not been checked and approved by any of the following:
		1. Director, Ouality Control.
		2. Regulatory Affairs Manager.
		3. Head of Pharmaceutical Sciences.
		4. Chief Analyst.
		5. Quality Control Manager

Pharmaceutical Comment

Much of the information presented in support of this application for a Product Licence has been supplied before in support of the licence application for High Potency Factorate and the subsequent variations to this licence.

However, on consideration of the volume of data supplied on ingredient specifications, it would appear that the specification for Source Plasma (Human) is not up-to-date eg FDA requirements of March 1983. Information presented on the other specifications appear adequate.

The Company has presented some background information on heat treated Factor VIII (3.2 of this report) and cited that "more recently it has been established that heat-treatment of the finished, lyophilized product under controlled conditions can reduce the viability of specifically, non-A and non-B hepatitis virus without significant effect on the potency of the material improved safety potential in therapy with these products". In the absence of the citation of published papers to support these statements it was anticipated that supportive data would be found in the application.

Certain deficiencies have been detected in the application relating to the manufacture of dosage form: These are as follows,

- i. details of the sterilization of containers, the freeze-drying process and the in-process moisture limit have not been included
- ii. no details have been presented on the validation studies undertaken which justify the choice of the heat treatment process.
- iii. the proposed specifications cited in the application have not been approved by senor company personnel.
- iv. inadequate information has been presented in the Section on Development Pharmaceutics to support the significant change to the manufacturing process of Factor VIII.

Reference is made to experimental studies on heat treated material (see Drug Substance 4.1 to 4.3). From these experiments and the results obtained it has been concluded that the studies "have failed to show any det*iemental* effect attributable to the heat-treated procedures".

Analytical data has been presented on heat-treated Factor VIII. Results obtained are similar to those for non-heated material. However, this data is considered inadequate in two respects, namely quantity, the design of the study undertaken Experiments should have been undertaken to stress the product ie for greater periods of time and at higher temperatures.

The relevance of the Caerman study is obvious.

The statement that the "heat treatment does not affect Factorate material" (p.26) might be true using the criteria cited but are these parameters suitable to detect any change no matter how subtle it might be.

The total package of data presented at pages 45-61 on the 'Development Chemistry' relating to heat treated Factorate is considered inadequate as a justification that the heat treatment process chosen (60°/30 hours) is suitable for its intended purpose, without adversely effecting the integrity of the Factor VIII. The limited selection of studies undertaken, the objectives of these and conclusions drawn do not form a strong cohesive case in support of the inclusion of the additional heat-treatment step to the manufacturing process. This conclusion is drawn because,

- no attempt has been made to show the scientific justification for chosing a) heat treatment at 60°/30 hours and b) heat treatment of the freeze-dried product.
- ii. inadequate scientific evidence has been presented to confirm that the heat treatment has not adversely effected the product. In addition, some of the evidence presented relates to a product that has been heat treated at $60^{\circ}/24$ hours, not 30 hours which is the time period used for the product proposed for marketing.
- iii. the Sub-Committee members may wish to consider the suitability of the method of heat treatment and the criteria of treatment, in view of the fact that micro-organisms can be protected from damage by heat, and other agents, by virtue of two factors, the dry state, and the protective nature of protein envelopes eg the viability of bacterial spores is conferred by these parameters. It is known that the efficacy of kill of sterilisation procedures is less when a dry heat method is used as opposed to a wet method (eg 150°C/ 1 hour, dry heat as 121°C/15 minutes wet heat).

It may be that if the Company's predictions are correct (p.26), that is, "experimental studies on heat treated material have failed to show any detrimental effect attributable to the heat-treatment procedures," then it may be ineffective in killing virus effectively throughout the product. No evidence has been presented on the efficacy of the heat treatment against product spiked with viruses!!!

Pharmaceutical Conclusion and Recommendation

The Sub-Committee members may on the evidence before them, on the grounds of quality, feel unable to recommend the grant of a product licence on the basis that,

- 1. justification is required for the inclusion and the choice of heat treatment used.
- the heat treated product is adequately characterised supported by suitable data, which is clearly presented.
- further details are required on the sterilization of containers, the freeze-drying process and the in-process moisture limit for the product.

June 1984

J PURVES

APPENDIX 1

PRODUCT LITERATURE

1.1. Labelling and Package Insert

The label text for the product will be as that used for the existing product, High Potency Factorate (PL 0231/0044), except that the term Heat-treated' will be incorporated. The labelling will comply with the requirements of the BP monograph for Dried Factor VIII Fraction.

1.2. Data Sheet Text

It is proposed that the main body of the data sheet text used for High Potency Factorate (copy overleaf) will be retained for the heattreated product but the following rationale will be included under 'Further Information':

'Experimental studies have shown that heat-treatment of Anti-Haemophilic Fraction may remove or reduce the risk of transmission of non-A nor-B hepatitis. Consequently this product has been subjected to heat-treatment procedures during manufacture.'

PRESENTATION

Dried Human Antihaemophilic Fraction HIGH POTENCY FACTORATE is a stable lyophilised concentrate of Factor VIII (AHF, AHG) prepared from pooled human plasma. It conforms to the monograph for Dried Human Antihaemophilic Factor B.P.

Each vial contains the labelled amount of antihaemophilic activity in International Units (one International Unit is the activity equivalent to the average Factor VIII content of 1 ml aliquots of 167 samples of fresh normal plasma, as determined in an international collaborative study). Each vial also contains sufficient sodium chloride to make the reconstituted solution approximately isotonic when Water for Injections B.P. is added as directed.

USES

For use in therapy of classic haemophilia (Haemophilia A).

DOSAGE

HIGH PCTENCY FACTORATE is for intravenous administration only. As a general rule one unit of Factor VIII activity per kg will increase by 2% the circulating Factor VIII level, and although dosage must be adjusted according to the needs of the patient (weight, severity or haemorrhage, presence of inhibitors) the following general dosages are suggested.

1. Overt Bleeding

Initially 20 units per kg of body weight followed by 10 units per kg every eight hours for the first 24 hours and the same dose every 12 hours for the next 3 or 4 days. For massive wounds, give until bleeding stops and maintain with 20 units per kg 8-hourly to achieve a minimum Factor VIII level of 40%.

2. Muscle Haemorrhages

- (a) Minor Haemorrhages in extremities or non-vital areas: 10 units per kg once a day for 2 or 3 days.
- (b) Massive Haemorrhages in non-vital areas: 10 units per kg by infusion as 12 hour intervals for 2 days and then once a day for 2 more days.

(c) Haemorrhages near vital organs (neck, throat, subperitoneal), 20 units per kg initially; then 10 units per kg every 8 hours. After 2 days the dose may be reduced by one-half.

3. Joint Haemorrhages

10 units per kg every 8 hours for a day; then twice daily for 1 or 2 days. If aspiration is carried out, 10 units per kg just prior to aspiration with additional infusions of 10 units per kg 8 hours later and again on the following day.

4. Surgery

Dosages of 30 to 40 units per kg body weight prior to surgery are recommended. After surgery 20 units per kg every 8 hours should be administered. Close laboratory control to maintain the blood level of Factor VIII above 40% of normal for at least 10 days post-operatively is suggested.

5. Dental Extractions

For simple extractions a pre-operative dose of 20 - 25 units per kg sufficient to raise the Factor VIII level to 50% should be given, followed by intravenous administration of tranexamic acid. For multiple extractions further doses of Factor VIII may be advisable 24 or 36 hours after the operation. (Dormandy 1977.)

RECOMMENDED RECONSTITUTION

Reconstitute HIGH POTENCY FACTORATE using 30 ml Water for Injections B.P. using standard aseptic precautions.

Warm both diluent and HIGH POTENCY FACTORATE vials to between 20°C and 30°C. Direct diluent down the side of the vial and gently rotate the vial until contents are dissolved. DO NOT SHAKE VIAL. Vigorous shaking will cause frothing and prolong the reconstitution time. Complete solution usually takes approximately 10 minutes. The solution is now ready for administration. If a gel forms on reconstitution, the preparation should not be used. The solution should be used within three hours of reconstitution.

ADMINISTRATION

Standard aseptic techniques should be used at all times

Intravenous Injection

Plastic disposable syringes are recommended with Factor VIII solution. The ground glass surfaces of all-glass syringes tend to stick with solutions of this type.

- 1. Attach a filter needle to a sterile disposable syringe. Insert filter needle into stopper of Factor VIII vial; inject air and withdraw the reconstituted solution from the vial.
- Discard the filter needle and attach a suitable intravenous needle.
- 3. Administer solution by slow intravenous injection, at a rate comfortable to the patient, and not exceeding 2 ml per minute.

Intravenous Infusion

The infusion equipment used should comply with that described in sections 3 or 4 of British Standard 2463:1962, Transfusion Equipment for Medical Use.

- 1. Prepare solution of HIGH POTENCY FACTORATE as recommended under Reconstitution.
- 2. Attach suitable infusion set.
- 3. If more than one vial is to be administered to the same patient the infusion set may be transferred to a second vial.
- 4. When infusion of HIGH POTENCY FACTORATE is complete, the infusion set may be flushed with sterile ischonic saline to avoid loss of any of the reconstituted solution.
- After use, discard infusion set, needles and vials together with any unused solution.

HARNING

Factor VIII is prepared from human plasma, each donation of which has been found negative for hepatitis 8 surface antigen (HBsAg) by the radioimmunoassay (RIA) method. In addition, each batch, after reconstitution as recommended, has been tested and found negative by the RIA method. However, since no completely reliable laboratory test is yet available to detect all potentially infectious plasma donations, the risk of transmitting viral hepatitis is still present.

SIDE EFFECTS

Products of this type are known to cause mild chills, nausea or stinging at the infusion site.

CONTRA-INDICATIONS

There are no known contra-indications to antihaemophilic fraction.

PRECAUTIONS

Factor VIII contains low levels of group A and B isohaemagglutinins. When large volumes are given to patients of blood groups A, B or AB, the possibility of intravascular haemolysis should be considered. Such patients should be monitored by means of haematocrit and direct Coombs test for signs of progressive anaemia.

PHARMACEUTICAL PRECAUTIONS

HIGH POTENCY FACTORATE is to be stored below 6° C. When stored as directed, it will maintain its labelled potency for the period indicated on the label.

LEGAL CATEGORY

P.0.M.

PACKAGE QUANTITIES

HIGH POTENCY FACTORATE is supplied in single dose vials (potency is stated on each vial label).

FURTHER INFORMATION

Haemophilia A, a hereditary disorder of blood coagulation occurring almost exclusively in males results in profuse bleeding in joints, muscles or internal organs as a result of minor trauma. The disease appears to be due to a deficiency of a specific plasma protein, antihaeomphilic factor, Factor VIII: HIGH POTENCY FACTORATE provides temporary replacement of the missing clotting factor.

Affected individual frequently require therapy following minor trauma. Surgery, when required in such individuals must be preceded by temporary correction of the clotting abnormality with fresh plasma transfusions, cryoprecipitate or by injections of Factor VIII concentrates. Advantages of the use of concentrates of Factor VIII are the avoidance of hyper-proteinaemia, overloading the circulatory system and possible kidney dysfunction resulting from large volume transfusions. Several different concentrations of Factor VIII have been used successfully. These range from Fraction I of Cohn to highly-purified poteny preparations. Dried Human Antihaemophilic Fractions - HIGH POTENCY FACTORATE is a purified preparation with lower levels of fibrinogen and other non-AHF proteins per international unit than "Intermediate Purity" AHF preparations.

30.

PRODUCT LICENCE NUMBER

PL 0231/0044

PRODUCT LICENCE HOLDER

Armour Pharmaceutical Company Limited, St. Leonards House, St. Leonards Road, Eastbourne, East Sussex, BN21 3YG

APPENDIX =

No:

PL 0116/0011

Company:

Travenol Laboratories Limited Product:

Hemofil

Therapeutic Class:

Blood Product

Active Constituent:

Factor VIII

Main Committee

22/23.9.83

Advice

On the evidence before them the Committee on grounds relating to safety, quality and efficacy were unable to recommend that the product licence for this preparation should be varied as indicated in the application.

1. inadequate evidence of safety and efficacy was provided,

2. justification should be provided for the inclusion and choice of heat treatment,

3. the heat treated product was inadequately characterised,

4. in the event of the grant of a variation to the licence labels and data sheets should be amended to the satisfaction of the Secretariat.

Remarks to Licensing Authority

Promotional letters making unjustified claims on improved safety margins in respect of infection and A.I.D.S were seen by the Committee and strongly deprecated.

Remark to Company

Evidence of the long-term safety in haemophiliac patients of treated products such as this is regarded as an important pre-requsite of licensing.

APPENDIX 3.

No.	Main Committee 22/23.3.84
RT 0086/0100	Advice
FL 0080/0100	On the evidence before them the Committee advised the grant of a Product Licence for this preparation on condition that:
<u>Coy.</u> Hoechst UK Ltd	1. satisfactory information was provided on the heat-treatmen process; this should include the identity and concentrations of added stabilising agents,
Product. Vactor VIII HS	2. clarification was given on the electrophoresis data before and after heating, with special reference to the thermal degradation products of Factor VIII and clear statements were given on the change in Factor VIII potency,
Nama an Edia Chana	3. the Finished Product Specification was amended to include:
Inerapeuric Glass	i) a test with suitable limits for sodium,
An LINA emo prific	 a clear statement of the acceptance/rejection criteria in the microzone electrophoresis test,
Active Constituent Factor VIII	iii) an upper limit of Factor VIII activity of not more than 125% of the labelled amount.
500 iu, .000 iu per vial	4. suitable comparative results between the Behringwerke assa for Factor VIII and the BP 1980 assay were provided, together with confirmation that the Behringwerke standard was calibrated in IU against the WHO International Standard,
	5. additional stability data were provided showing the result of tests for degradation products on storage,
	6. confirmation was given that the air in the vial is removed or replaced by sterile oxygen free nitrogen,
	7. an assurance was given that the Albumin would comply, if tested with all the tests in the BP specification,
	8. biological evidence of the reproducibility of the inactivation process was provided,
	9. the Data Sheet and Product Particulars were amended to the satisfaction of the Secretariat, with particular reference to:
	 inclusion of a statement that the material was heat-treated;
	ii) no claims being made that the transmission of hepatitis B and non-A non-B hepatitis had been excluded;
	iii) no reference to AIDS being included except as a warning that blood products may transmit the syndrome,

10. the Batch Release procedure should apply, to include the provision of hulks and in-process samples. Re 0086/0100 Remark Porther studies on the effectiveness of the inactivation process should be undertaken. Product Record VIII HS Therapoutic Glass Anthaemophilic Active Constituent Factor VIII Sid fa, Sid (a, Sid (a) Io0] iu per vial		
No. 10. the Batch Release procedure should apply, to include the provision of bulks and in-process samples. PL 0086/0100 Remark Further studies on the effectiveness of the inactivation process should be undertaken. Roecher UK Ltd Product Ractor VIII HS Therapeutic Glass Antthaemophilic Active Constituent Pactor VIII 200 ju per vial		
PL 0086/0100 Remark Gov. Boechst UK Ltd Product: Sactor VIII HS Therapeutic Glass Antihaemophilic Activa Constituent Faccor VIII 500 tu, 1000 tu per vial	<u>No:</u> .	10. the Batch Release procedure should apply, to include the provision of hulks and in-process samples.
Cov. Purther studies on the effectiveness of the inactivation process should be undertaken. Product Pactor VIII HS Therapeutic Class Antihaemophilic Active Constituent Peccor VIII Peccor VIII S0 10, 10, 1000 in per vial	PL 008670100	Remark
Hoechst UK Ltd Product Factor VIII HS Active Constituent Faccor VIII 350 50, 1000 fu per vial	Cov.	Further studies on the effectiveness of the inactivation process should be undertaken.
Product Factor VIII HS Therapeutic Glass Antihaemophilic Active Constituent Pactor VIII 250 10, 300 11, 1000 fu per vial	Hoechst UK Ltd	
Pactor VIII HS Therapeutic Class Antihaemophilic Active Constituent Factor VIII 230 iu, 300 iu, 1000 iu per vial	Product	
Therapeutic Class Antihaemophilic Active Constituent Factor VIII 250 10, 300 10, 1000 10 per vial	Factor VIII HS	
Antihaemophilic Active Constituent Factor VIII 250 iu, 500 iu, 1000 iu per vial	Therapeutic Class	
Active Constituent Factor VIII 250 tu, 1000 tu per vial	Antihaemophilic	
Factor VIII 250 fu, 500 fu, 1000 iu per vial	Active Constituent	
	Factor VIII 250 iu, 500 iu, 1000 iu per vial	
방법에서 성실 것은		

TBOURN	as-unusuuuu E	an innar e	ENGI		Docum	ent	AMENDIX 4.	
duct:			STABI	LITY REPORT				
HIGH POTENCY FACTORATE (GENERATION IIB) REAT-TREATMENT					Number		Date MAY 1983	
					Repla	ces	- -	
	1. <u>POTEVICY</u>							
	STORAGE	TESTING	UNHEATED	CONTROL	HEATED M	ATERIAL POTENCY		
ATCH NU.	°C	(MONTHS)	Ιυ/νιλι	% INITIAL	IU/VIAL	% OF INITIAL UNHEATED CONTRO	3 OF INITIAL L UNHEATED CONT	
3602	2 - 3°C	0 1 2 3 6 12	728 - - - 648	100 - - - - 39	374 706 693 703 681 630	93 97 95 97 97 94 87	100 105 105 104 101 93 •	
	15 - 30°C	0 1 2 3 6 12	728 - - - 642	100 - - - 88	674 692 693 586 572 537	93 85 95 94 92 38 ~	100 103 103 102 100 95	
	3s°c	U 1 2 3 6	728 - - 701	- - - 96	574 719 704 590 560	93 99 97 95 91 -	100 107 104 102 58	
				35				

WITN6406036_0035

STBOUR	NE		ENG	FLAND	Docur	nent	31
roduct:					STABI	LITY REPORT	
	HIGH POTE (GENERATI HEAT -TREA	NCY FACTOR ION IIB) Viment	RATE		Numbe	51	Date MAY 1983
-					Repla	2ces	
	1. <u>Poten</u>	EY (Cont.)					
	STORAGE	TEST ING	UNHEATED	CONTROL	HEATED M	ATERIAL POTENCY	
TCH ND.	TEMPERATURE °C	INTERVAL (MONTHS)	IU/VIAL	% INITIAL	IU/VIAL	% OF INITIAL UNHEATED CONTROL	% OF INITIAL
ГСН NO.	TEMPERATURE °C 2 - δ°C	INTERVAL (MONTHS)	IU/VIAL 326 - - - 783	% INITIAL 180 - - 95	IU/VIAL 783 788 790 775 770 747	S OF INITIAL UNHEATED CONTROL 95 95 96 94 33 30-	%-OF INITIAL UNHEATED DOM 100 101 101 99 93 95
тсн ND. 106	TEMPERATURE °C 2 - ð°C 15 - 30°C	INTERVAL (MONTHS)	IU/VIAL 326 - - - - - - - - - - - - -	<pre>% INITIAL 100</pre>	IU/VIAL 783 788 790 775 770 747 783 784 724 783 784 724 726 761 741	<pre>% OF INITIAL UNHEATED CONTROL 95 95 96 94 93 90- 95 95 94 94 94 94 94 94 94 90 -</pre>	%-OF INITIA UNHEATED COI 101 101 99 93 95 95 100 100 100 99 97 -95-

TBOURNI	ENG	LAND Document	- Ca
.uct:		STABILITY REP	ORT
	HIGH POTENCY FACTORATE (GENERATION IIB) HEAT-TREATMENT	Number	Date May 1983
		Replaces	entry of an energy of the second s

2. POTENCY 3-HOUR POST RECONSTITUTION

BATCH	STORAGE	TESTING	UNHEATED CONTROL	HEATED MATERIAL POTENCY		
NO.	(°C)	(MONTHS)	IU/VIAL	U/VIAL	3 OF INITIAL HEATED	
V 44106	2 - 8°C	0 1 2 3 5 12	- - - - 776	783 794 781 750 755 750	100 101 100 97 96 96	
	15 - 30°C	0 1 2 3 6 12	- - - 774	783 793 777 769 755 740	100 100 99 98 98 98 95	
	35°C	0 1 2 3 5	- - - 312	783 788 772 772 755	100 101 99 99 99 99	

MOUR PE	<u>iarmaceutiuan</u> oumparo. Te	EIGLAND	Pharmaceutical Document	
eoduct:			STABILITY REPO	RT 36
	HIGH POTENCY FACTORATE (GENERATION IIB) HEAT-TREATED		Number	Date MAY 1983
			Replaces	

2. POTENCY 3-HOUR POST RECONSTITUTION (Cont.)

ВАТСН	STORAGE	TESTING	UNHEATED CONTROL	HEATED MATERIAL POTENCY		
γo.	(°C) (MONTHS)		IU/VIAL	U/VIAL	% OF INITIAL HEATED	
/ 28602	2 - 3°C	0 1 2 3 6 12	- <i>(</i> - - - 652	767 705 897 701 885 819	100 100 99 99 97 36	
	15 - 30°C	0 1 2 3 5 12	- - - 623	707 701 575 579 878 529	100 59 96 96 99	
	35°C	0 1 2 3 6	- - - - - 230	707 722 701 834 858	106 102 39 37 33	

STROURN	Ś. wardzie i starowa za starowa z	ENGLAND	Document
Buice:			STABILITY REPORT 37
	HIGH POTENCY FACTORATE (GENERATION IIB) HEAT-TREATED		Number Date MAY 1983
			Replaces

3. SOLUTION TIME/APPEARANCE

JATCH	STORAGE	TESTING	UNHE, ATED CONTRO	JL.	HEATED MATERIAL		
NO.	(°C)	(MONTHS)	SOLUTION TIME	APPÉARANCE	SOLUTION TIME	APPEARANCE	
V 44106	2 - 8°C	0	22m 52s	Satisfactory	<16m	Satisfactory	
•		1	•		<16m	Satisfactory	
		2			<13m	Satisfactory	
		3			(14m	Satisfactory	
		5			<16m	Satisfactory	
		12	<12m	Satisfactory	<10m	Satisfactory	
	15 - 30°C	0	22m 52s	Satisfactory	<16m	Satisfactor	
		1	-	•	(1Um	Satisfactor	
		2	-		CIUM (1.0m	Satisfactor	
		9			1 1 4 m	Satisfactor	
		10		Catio Saatonu		Satisfactor	
		12	NO(H	adustaciony	N 1 III	30,15100,01	
	35°C	0	22m 52s	Satisfactory	16m	Satisfactor	
		1		N	<14m	Satisfactor	
		2			-13m	Satisfactor	
NU-See		3	-	-	<12m	Satisfactor	
		5	<17m	Satisfactory	<10m	Satisfactor	

MULR PRAILECLUITCHE	ENGLAND	Document	- Carl and	
oduct:		STABILITY RE	PORT	<u> </u>
HIGH PGTENCY (GENERATION I HEAT-TREATED	FACTORATE (IB)	Number	Date MAY 1983	
		Replaces		
		۵۰۳۹۹۵۵۵۵۳ ⁹ ۹۰۹۵۵۵۵۵۵۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹۹	*******	**************************************

Ξ.

SOLUTION TIME/APPEARANCE (Cont.)

	ВАТСН	STORAGE	TESTING	UNHEATED CONTRO)L	HEATED MATERIAL	-
s Star	ND.		(MONTHS)	SOLUTION TIME	APPEARANCE	SOLUTION TIME	APPEARANCE
	V 28602	2 - 8°C	0 1 2 3 6 12	10m - - - - 8m	Satisfactory - - Satisfactory	< 10m < 13m < 10m < 3m < 8m < 8m	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
		15 - 30°C	0 1 2 3 6 12	10m - - - - *6m	atisfactory - - - Satisfactory	<10m < 7m <10m <10m < 6m < 8m	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory
, see 1		35°C	0 1 2 3 5	10m - - <10m	Satisfactory - - Satisfactory	(10m (11m) 3m (3m) 7m	Satisfactory Satisfactory Satisfactory Satisfactory Satisfactory

	I C I		
	IGH POTENCY FACTORATE GENERATION 113) EAT-TREATED		AUE OIL ME CONSTANT ENGLA
Replaces		STABILITY R	UD Document
	Date May 1983	ep ort	
			00

Stability data are presented for two batches of High Potancy Factorate, which have been subjected to near-treatment at SC°C for thirty-hours. The latter treatment has been shown to have possible beneficial effects in the prevention of transmission of non-4, hon-5 hepatitis virus which 5 thought to be 0800 190113

Sauce.

BATCHES EXAMINED

-100 Experimental following normal codes for producti these Datches on patches were are included ພ ເວິ ເວ 100101 in perentheses. ct o heat-treatment

- V 23602 (A 1807-524)
- 44106 (A 1807-323)

TREATMENT

Viais of finished (water-bath) for temperature (15 scecified in the results ດ້ານ ເບິ່ງ product have been subjected to heat treatment at SD 30 hours and stored at refrigerated (2 - 8°C), room 30°C) and elevated temperature (35°C) for the times results section. ເ) ເງ

1 and

т 00 1 1 After the specified storage periods, vials of finished product have been tested for potency, potency a hours after reconstitution, solution time and appearance. Potency values are appressed as units per vial and and also as percentages of initial control (unneated) potency and initial potency of heated material to give information on the respective affects of reat ment and storage 9 11 13 00 stacility of 41 57 10 108011 († 13 10 10 10 10 10 10 10 product.

4

£

MEDICAL ASSESSMENT

Introduction

This is an abridged application for a Product Licence for a heat-treated version of Armour's High Potency Factorate. The untreated High Potency Factorate was licensed in 1979 and has been available since then.

The proposed uses for the heat-treated product are:

"Treatment of classical haemophilia A"

and the only additional claims to be made for it are the insertion of the following under "Further information":

"Experimental studies have shown that heat-treatment of Anti-Haemophilic Fraction may remove or reduce the risk of transmission of non-A non-B hepatitis. Consequently this product has been subjected to heat-treatment procedures during manufacture."

Apart from the heat-treatment applied to the vials of lyophilised product, the method of manufacture is said to be identical with that used for the untreated licensed product.

Pharmacy Points

The Chemistry and Pharmacy has of course been dealt with in detail by the Pharmaceutical Assessor but the following points should be noted:

- 1. There seems to be little information on how the temperature and duration of the heat-treatment were arrived at. A temperature of 60° for 30 hrs is used and there is a statement that 60° for 24 hrs was inadequate but the reasons for choosing these values and excluding others are not given.
- 2. The aluminium levels in the Finished Product Specifications are rather high. These are as follows:

u/	vial		Al/via	11	A1/	1	Al	/unit
	250	10	ml < 50) mcg	5,000	mcg	0.	2 mcg
	500	20	ml < 100	mcg	5,000	mcg	0.1	2 mcg
1,	000	30	ml <180) mcg	6,000	mcg	0.	18 mcg
2,	000	60	m1<300) mcg	5,000	mcg	0.	15 mcg

These values exceed the rule of thumb levels of 1,000 mcg Al/1 and 0.1 mcg Al/u but it should be pointed out that the single batch analysis presented, for a 500 u vial, quotes $\leq 2 \text{ mcg/vial}$ against a FPS of $\leq 100 \text{ mcg/vial}$. This would suggest that the company could tighten up the specification for aluminium without too much difficulty.

WITN6406036 0042

3. Further to 2., it is strange that the company have not presented batch analyses for each of the four strengths.

Experimental and Biological Studies

The company have presented three reports in this section:

- 1. A half-life study in haemophiliac dogs.
- 2. A blood pressure study in anaesthetised dogs.
- 3. A hepatitis transmission study in chimpanzees.

1. <u>Half-life and recovery of heated and unheated antihemophilic Factor VIII</u> in hemophilic dogs

Three haemophiliac dogs were given doses of 770 u FVIII by i.v. infusion. Two received heat-treated material, the other, untreated. A fourth dog, not included in the report but mentioned in the discussion, was given untreated FVIII and had a severe anaphylactoid reaction.

The numbers are too small to draw firm conclusions but the results indicate that heat-treatment does not reduce recovery or shorten halflife. In fact, the control dog had a recovery of 65% compared with 81% and 97% respectively for heat-treated material. The half-life in the control dog was 8 hours compared with 18 and 22 hours. Both products appeared well tolerated apart from the reaction described above.

2. Effects of antihemophilic factorate, heated and non-heated, on heart rate and mean arterial blood pressure in anesthetized dogs

Eight male beagles were anaesthetised and given either heat-treated or untreated FVIII by i.v. infusion. Heart rate and BP were monitored. Neither product appears to have produced any significant consistent change.

3. The in vivo infectivity assay of heat-treated antihemophilic factor containing non-A. non-B hepatitis virus (Hutchinson strain)

Previous work by the company had convinced them that heat-treatment of FVIII did not prevent the transmission of hepatitis B. Three chimpanzees had been given FVIII spiked with HBV; two had material which had been heattreated after spiking while the third had untreated, spiked material. All three developed hepatitis B. However, it is suggested that "... the positive control animal had two courses of disease, the first of which was concluded due to non-A, non-B agent, presumed for this reason to be present in the test substance".

The study described employed five chimpanzees who were given FVIII spiked with Hutchinson strain non-A non-B virus. Three received material heattreated after spiking and two received untreated, spiked material. One of the control animals developed NANBH but the other did not, even after re-challenge with unheated material. None of the three who had heat-treated material developed NANBH. Two were subsequently re-challenged with untreated material and developed NANBH.

Toxicology

The company state:

"Classical toxicological studies in animals have not been conducted with Factorate as such studies have been deemed inappropriate in view of the human origin of the material. Each batch of material produced is subjected to abnormal toxicity testing in mice and guinea pig and compliance with these tests is a requirement of the Finished Product Specification.

No further toxicological testing has been conducted with the heated material."

Studies in Humans

The only evidence presented in this section derives from "... a half-life study carried out in haemophiliac patients in the USA using a heat-treated preparation of Factorate (0231/0038) to which a small quantity of Hepatitis B Immune Serum Globulin has been added in processing."

The company are currently conducting a British clinical trial of their heattreated product in "virgin" haemophiliacs under CTX 0231/0070A but no results have been submitted. Reference is made to the difficulty and slowness of such studies. The summary of this section is attached as APPENDIX A.

Although the clinical trial used material different from the subject of this application, the results are presented in great detail. They indicate that the heat-treated FVIII to which HB immune globulin was added was equivalent in terms of half-life, recovery and tolerance, to untreated material without the HB immune globulin.

MEDICAL COMMENT

- 1. The evidence submitted in support of this application is rather insubstantial.
- 2. Loss of potency caused by the heat-treatment is dealt with as part of the stability data and is difficult to quantify.
- 3. Reasons for choosing 60°C for 30 hours rather than other temperatures or times are not given.
- 4. The small amount of experimental data indicates that the half-life and recovery of the heat-treated material are comparable with the untreated licensed product but one would have expected more data from patients.
- 5. Tolerance appears comparable to that of the untreated licensed product but there is too little evidence to draw any firm conclusions.
- 6. There are no clinical data relating to the product for which the licence is sought.
- 7. There is evidence from the chimpanzee studies that heat-treatment may reduce the risk of transmission of non-A non-B hepatitis but the numbers

are very small and there are no clinical data to support this claim. The company clearly recognise this as shown by the statement at the end of their summary (Appendix A):

"Consequently the effectiveness of heat-treatment in reducing NANBV transmission may only become apparent epidemiologically and thus no strong claim is proposed for the effectiveness of this procedure at this time".

The claim made by the company is contained in the short paragraph intended for inclusion in the Data Sheet, which may be seen in the introductory section of this Medical Assessment.

8. In spite of the difficulties referred to by the company, it would not seem unreasonable to expect some clinical data from the CTX which they hold to form part of this application.

145

PART IV STUDIES IN HUMANS

Studies in humans have not been carried out specifically with Heattreated High Potency Factorate; however the efficacy of High Potency factorate in replacing deficient levels of factor VIII in haemophiliacs is well-established.

Support for the hypothesis that the heat-treatment process is provided by the <u>in vitro</u> studies and biological studies in dogs and chimpanzees, reported in this application. In addition further supportive evidence is provided by a half-life study carried out in haemophiliac patients in the USA using a heat-treated preparation of Factorate (0231/0038) to which a small quantity of Hepatitis B Immune Serum Globulin has been added in processing. The study was carried out as an open two-way cross-over study in six haemophiliac patients. Extensive laboratory testing was carried out on blood samples collected at 0, 15, 30 and 60 minutes and 2, 4, 6, 8, 24 and 48 hours after infusion of test materials.

There were no significant differences in parameters measured, attributable to the heat-treatment process. Half-life and recovery values for the two materials were comparable and no adverse reactions or intolerance reactions to infusion of either material were encountered. A copy of the report of this study is attached.

The effectiveness of heat-treatment of Factorate products in reducing the risk of NANBV cannot readily be determined by clinical study. The incidence of NANBV in normal therapy is such that haemophiliac patients invariably contract the disease albeit in a mild form very soon after exposure to therapy. Thus in order to clearly demonstrate benefit it is necessary to rigidly exclude such patients from the study and rely on the recruitment of new 'virgin' patients who have not previously received treatment. Such patients are rare and their rate of recruitment too slow to provide meaningful results on a short-term basis. Such a study is currently in progress with Factorate under CTX 0231/0070A.

Consequently the effectiveness of heat-treatment in reducing NANBV transmission may only become apparent epidermiologically and thus no strong claim is proposed for the effectiveness of this procedure at this time.

46

1

Contraction of the local division of the loc

Number:	COMMITTEE ON SAFETY OF MEDICINES
PL 0231/0072	SUB-COMMITTEE ON BIOLOGICALS
	Draft Medical Recommendation
<u>Company</u> :	On the swideness before them, the Sub Committee recommended that
Co Ltd	on grounds of safety and efficacy a Product Licence should be refused for this preparation.
Product:	The Sub-Committee considered that:"
Heat-treated High-Potency Factorate	1. There was insufficient evidence of safety in clinical use.
Therapeutic Class:	2. There was insufficient evidence of efficacy in clinical use.
Anti-haemophilic Blood Product	3. There was no clinical evidence relating to any changes brought about by the heat-treatment particularly in relation to the transmission of hepatitis.
active Constituents:	
Human Factor VIII	
	47.