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Summary. Injecting drug users (IDUs) have a direct social and economic effect yet can typically
be regarded as a hidden population within a community. We estimate the size of the IDU pop-
ulation across the nine different Government Office regions of England in 2005-2006 by using
capture-recapture methods with age (ranging from 15 to 64 years) and gender as covariate
information. We consider a Bayesian model averaging approach using log-linear models, where
we can include explicit prior information within the analysis in relation to the total IDU popula-
tion (elicited from the number of drug-related deaths and injectors’ drug-related death rates).
Estimation at the regional level allows for regional heterogeneity with these regional estimates
aggregated to obtain a posterior mean estimate for the number of England’s IDUs of 195840
with 95% credible interval (181700, 210480). There is significant variation in the estimated re-
gional prevalence of current IDUs per million of population aged 15-64 years, and in injecting
drug-related death rates across the gender x age cross-classifications. The propensity of an
IDU to be seen by at least one source also exhibits strong regional variability with London having
the lowest propensity of being observed (posterior mean probability 0.21) and the South West
the highest propensity (posterior mean 0.46).
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1. Introduction

We focus on estimating the prevalence in 2005-2006 of current injecting drug users (IDUs)
mainly of opiates in England, and at the Government Office region level when cross-classified
across gender and age (15-34 and 35-64 years). England’s population of injectors rose epidem-
ically in the (late) 1980s (de Angelis ez al., 2004). Opiate substitution therapy was introduced to
reduce injection-related harms and to promote off-injecting. Quality assurance in methadone
prescribing was achieved between 2000 and 2004 (see Strang et al. (2010)). A major public health
reason to engage injectors in methadone substitution therapy 1s to reduce their risks of blood-
borne virus transmission and drug-related death (DRD). Methadone clients may continue to
nject but, typically, their number of injections of illicit heroin reduces considerably (Hutchinson
et al., 2000). Estimating the number of current IDUs at the regional and national levels (cross-
classified by gender and age) permits the estimation of the injecting DRD rate by taking the
ratio of the corresponding number of deaths attributed to injectors (namely heroin-related deaths
(HRDs)) with the estimated population size of IDUs.

Sudden deaths (which include DR Ds) in individuals within the UK are almost always sub-
ject to a post-mortem examination to determine the cause of death. Toxicology tests are con-
ducted to identify illicit drugs within the system. Because there is no standardized proto-
col for conducting or reporting the toxicology of DRDs, there may be some heterogene-
ity in recording such deaths. Official statistics do not document whether the deceased per-
son had a history of injection drug use, let alone whether she or he was a current injector,
and so we cannot know which opiate-related DRDs occurred in current injectors. (Not all
opiate-related DRDs occur in injectors, but the majority do). It is also possible for a death
to be recorded as a DRD even though the drug(s) made no significant contribution to the
death, but these cases are likely to be very few for opiate-related deaths. Thus, as a reasonable
approximation, we shall count, or attribute, all HR Ds (but no methadone-only DRDs) as having
occurred in current IDUs. We use the term injecting DRD rate to denote HRDs per 100 current
injectors.

To obtain estimates of the number of TDUs we use capture-recapture methods. For closed
populations, capture—recapture methods have a long history in both ecological (Otis ef al.,
1978) and epidemiological (Fienberg, 1972) applications. For an overview of the use of capture—
recapture methods in epidemiology see, for example, Hook and Regal (1995) and Chao et al.
(2001) with recommendations on the use of such methods presented by Hook and Regal (1999,
2000). Within epidemiology, capture-recapture studies involve collating data across a series of
different data sources. Each source records all individuals in the target population who were
observed by that source. Individuals are uniquely identifiable, which allows the construction
of a contingency table wherein each cell entry corresponds to the number of individuals who
were observed by each distinct combination of sources. However, there is an unobservable cell
corresponding to the number of individuals who belong to the target population but were not
observed by any source. Thus, failing to estimate this cell entry can significantly underestimate
the true target population size, particularly with difficult-to-reach populations. To estimate the
unobservable cell, a model is fitted to the observed data. Capture-recapture studies have been
used in a variety of situations including for the estimation of hidden populations (Mastro et al.,
1994; Frischer et al., 1993; Beynon ez al., 2001; King, Bird, Hay and Hutchinson, 2009) and
disease prevalence (Hook ef al., 1980; Madigan and York, 1997; Chao et al., 2001). We consider
the commonly used log-linear models and apply a Bayesian approach that permits the use of a
model-averaged estimate of the target population size, thereby accounting for both parameter
and model uncertainty (Madigan and York, 1997; King and Brooks, 2001a).
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Estimating Prevalence of Injecting Drug Users and Heroin-related Death Rates 3

Additional covariate information is often collected corresponding to individual characteris-
tics, such as gender, location, age and marital status. Individuals with different characteristics
may have different propensities to be observed by different combinations of sources (King, Bird,
Hay and Hutchinson, 2009). Covariates can be introduced as additional factors within the anal-
ysis to account for covariate heterogeneity (Tilling and Sterne, 1999; Tilling et «l , 2001). For the
nine Government Office regions of England, we adopt a similar approach to King ez al. (2005)
by considering two demographic characteristics, each with two levels: gender and age group
(15-34 years and 35-64 years), by which DRDs are also cross-classified. The break between
the different age groups is chosen since 35 years and above 1s one of the preferred age groups
for reporting injecting prevalence estimates at the European Monitoring Centre for Drugs and
Drug Addiction. This age group also corresponds to the aging of young initiates into England’s
injector epidemic from the mid- to late 1980s to be in the 35-64 years age group in 2005 and
beyond. In addition, we note that there is interest in the HRD rates per 100 current IDUs and
the 35 years and above age group can represent 15 or more years of injecting. We do not include
the region itself as a discrete covariate but analyse the regional data independently of each other.
This permits a direct comparison of important interactions identified for each region. Of par-
ticular interest is not only the estimates of IDUs within and across regions, but also injectors’
HRD rates. We use expert prior information on the injecting DRD rate, combined with infor-
mation on the regional number of HRDs, to elicit an informative prior on the total number of
injectors. The HRDs are themselves provided across the different covariate levels, permitting
the estimation of injecting DR D rates for the different joint covariate levels.

In Section 2 we describe the capture-recapture data and introduce the notation that we use
before describing the Bayesian approach that we implement to analyse the data in Section 3.
Section 4 presents the results, with particular focus on the number of IDUs and associated
injecting DRD rates. We conclude with a discussion in Section 5.

2. Regional data

Data that were used within the capture-recapture analyses were collected nationally across
England in the financial year 2005-2006. These data can be disaggregated to the drug action
team (DAT) area level. In 20052006, there were 149 DATS in England. For each DAT area,
the same four sources were used to identify TDUs uniquely from which we can construct a 2*
contingency table with a single unknown cell. The four sources of data were

(a) probation,

(b) drug intervention programme (DIP) prison assessments,
(¢) drug treatment and

(d) DIP community asscssments.

To cross-classify individuals between the different sources the following set of common identi-
fiers was used for each contributing source of data:

(i) forename initial,
(11) surname initial,
(111) gender and

(1v) date of birth.

For each source, only individuals with all four identifiers known were included. For two recorded
cases, if all four identifers were the same (Hay ef al., 2009), we assumed that they related to the
same person either between different sources or duplicated within a single source. Geographical
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information, such as address, postcode sector or district, was used to allocate area of residence.
For further information on the sources of data see, for example, Singleton et al. (2006) and
Skodbo ez al. (2007) with particular reference to DIPs.

DIPs arc a crime reduction initiative which works across different criminal justice bodies
(such as police, prison and probation) and drug treatment services. Assessments which record
an individual’s current drug injecting status are carried out at various points in their jour-
ney through the criminal justice system and into treatment, ¢.g. via drug testing while in
police custody. The registers are comprehensive in their recording of clients either because
they relate to formal justice processes (probation or DIP) or because they are needed for re-
imbursement (such as treatment numbers). However, for an individual client to be identified
as an IDU it does depend on this characterization being both disclosed and recorded. In
England, there has been major investment in DIPs, both in prisons and in the community,
with the aim of engaging in assessment and drug treatment those who are involved in the
criminal justice system who test positively for opiates or cocaine (for further details see Skod-
bo et al. (2007)). Regions where connections across services are made successfully would be
revealed by the same clients tending to feature on more than one source of data and perhaps
by lower injecting DRD rates if current injectors are successfully engaged in opiate substi-
tution therapy, of which methadone accounted for 83% in England in 2005 (Strang ef al.,
2007).

Notationally, we label the four sources S, S», S3 and Sj4, using the same order as above.
We label each cell in the 2* contingency table by k € {0, 1}4, which represents the combination
of sources that an individual is observed by. For example, cell k=1{0,1,0,0} corresponds to
being observed by only source S» (DIP prison assessments). This approach permits the indi-
vidual identifiers of gender and age group to be considered as covariate data. We requested
that the observed individuals be cross-classified by gender and age group (15-34 and 35-64
years) which allowed us to receive four 2* regional contingency tables, which can be written as a
26 contingency table with each cell corresponding to the number of IDUs who are observed
by each combination of four sources for each gender x age group classification. These contin-
gency table data were originally calculated at the DAT area level. However, there 1s a trade-off
between the geographical scale that 1s used and the amount of information that is contained
in the corresponding area-specific data. Regional estimates (and variability) are themselves
of interest, yet to retain a reasonable level of mformation within the contingency tables for
fitting models and obtaining estimates we requested for the DAT contingency table data to
be aggregated to the nine Government Office region levels that had been used in previous
Home Office reports (Singleton et al., 2006). For each of the nine regional contingency tables
at the Government Office level, there are four unknown cell entries, corresponding to the num-
ber of individuals who were not observed by any of the sources for each gender x age group
classification.

For a given region, we let nyps and nyneps denote the set of observed and unobserved cell
entries respectively, and n= {ngps, Bunobs }- The total number of observed individuals is denoted
by . Further, for cach individual region, we let n, ) denote the observed number of individuals
of gender g in age group ¢ and n(y, 4k the number of individuals of gender g in age group «
that belong to cell k € {0, 1}4 for g {M,F} (M= male;F =female) and a € {15-34, 35-64}.
Thus, ng, a):0 =1y, a){0,0,0,0} denotes the number of individuals of gender g in age group «
who are not observed (1.e. the missing cell for the given cross-classification). Additionally we let
ng =2, 4 g ay:{0,0,0,0} denote the total number of unobserved individuals.

We let Ny, o) denote the total number of individuals of gender g in age group « for g {M, F}
and ae {15-34, 35-64}; and N={N(, o :g€ {M,F};a € {15-34, 35-64}}, so that
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Table 1. Number of unique IDUs observed in each region and each cross-classification of
gender and age

Region Total Muales, Females, Mules, Females,
15-34 years  [15-34 years  35-64 years  35-64 vears
East of England 3408 1574 605 962 267
East Midlands 5717 3365 963 1117 272
London 8198 2687 1062 3492 957
North East 4585 2044 858 643 140
North West 11309 4678 1756 3904 971
South East 5444 2605 940 1498 401
South West 8767 4091 1580 2405 691
West Midlands 6627 3886 1081 1332 328
Yorkshire and Humber 11221 6413 2221 2089 498
England 65276 32243 11066 17442 4525

Ng.ay=ngg,ay T rga0= 2 ngak-
kefo, 1}4
We let Niot =n +ng =2, 4« N, « denote the total number of IDUs in the given region. To
provide a brief summary of the data, we present the observed number of unique individuals
identified in each region in Table 1 along with the corresponding number observed for each
combination of gender and age (i.e. n and n¢y, o) for g € {M, F} and a € {15-34, 35-64}) for each
region. Appendix A provides the corresponding contingency tables for each region, but where
cells entries between I and 4 have been omitted.

3. Analysis

The observed contingency table for each region is analysed independently of all other regions.
We consider log-linear models that were initially introduced by Fienberg (1972), where the loga-
rithms of the contingency table cell probabilities are a linear sum of main effects and interaction
terms between the sources and/or covariates (and normalized so that the sum of the cell proba-
bilities equals 1). We let 03 denote the main effect log-linear terms for source S;, i€ {1,2,3,4},
at level x € {0, 1} and 0f the main effect log-linear terms for covariate B {G,A} (G = gender
A = age) for the different levels (i.e. be {M,F} for B=G and be {15-34, 35-64} for B=A).
We restrict the set of possible interactions to that of two-way interactions corresponding to
source x source (six in total), source x covariate (eight in total) and covariate x covariate
{(only one) interactions. These interactions remove the independence assumption between the
different sources. For example, a two-way interaction between sources S; and S> implies that
being observed by source S; (probation) increases or decreases the probability of also being
observed by source Sy (DIP prison assessment), and;imilarly for all other interactions between
sources and/or covariates. Notationally, we let 6,/ denote the source X source interaction
between sources S; and S; (7, j€ {1,2,3,4},i# j, and x,y € {0, 1}), b B the source x covariate
interaction between source 7 € {1,2, 3 4} and covariate Be {G, A} for x€ {0,1} and be {M, F}
if B=A and be{15-34,35-64} if B=A; and 0, CA the covariate x covariate interaction for
be{M,F} and c e {15-34, 35-64}. For 1dent1f1ab1hty (and prior consistency; see for example
King and Brooks (2001b)), we specify sum-to-zero constraints over the levels of each source or
covariate on cach of the log-linear terms. For example, we specify 9 + 9 =0, and similarly

RLITO001637_0005



6 R. King, S. M. Bird, A. M. Overstali, G. Hay and S. J. Hutchinson

for all other source and covariate main effect terms. Similar constraints are specified on the
interaction terms, e.g. 195“5q + 951 %2 —0 for x=0, 1.

We let pg. ok denote the probabllity that an individual is of gender g € {M, F} in age group
ae {1534, 3564} and lies in the contingency table cell k € {0, 1}* relating to the four data
sources. The saturated model (in terms of the presence of all main effect and two-way interaction
terms) has log-linear cell probabilities of the form

5.5 i s
P, a)kmexp(ZOkuﬁﬂGJrO“Jer 2 9;«(1)]1( )+29k<§)g+29kn)a+96A ,
i ] l i=1

where k(7) is the ith element of k (i.e. the value of k corresponding to source S;). Notationally,
we let the probability of not being observed by any source be denoted by pg =23y 4 p(g, a)0-
Submodels are obtained by setting the two-way interactions terms to be equal to 0 for all levels.
We let the set of log-linear parameters be denoted by 8. Finally, we note that

(Nobs, 20) | Niot, 8~ multinomial (N, Gobs)

where g, denotes the set of probabilities of the observed cells (i.e. k € {0, 1}*\0 correspond-
ing to being observed by each combination of sources, excluding not being observed by any
source) for each gender x age group cross-classification and probability of not being
observed (i.e. pg). For further discussion see, for example, King et ol (2005, 2009), who con-
sidered similar models in relation to IDUs in Scotland, with region as an additional two-level
factor.

3.1. Bayesian approach

We consider a Bayesian approach and analyse the data from each region independently of all
other regions so that, without loss of generality, we condition on a given region. For a given
log-lincar model m (in terms of the log-linear parameters in the model), we let the corresponding
set of log-linear parameters be denoted by 8,,. We then form the joint posterior distribution
over the set of log-linear parameters and total number of individuals in each gender x age group
cross-classification,

T (Niots Om Mobs) X fgps, 70| Niots Om) p(Niot, Om)

!
Mot H Z‘;[ aa)]]]; X Pgo P(Niot, 0,,).
(Niot =) g ML P} ae{15-34, 35-64) ke{0, 1140
The first terms in the posterior distribution correspond to the multinomial joint probability
mass function of the observed cell entries given the total population count and log-linear pa-
rameters (and hence cell probabilities) and p(Niot, 8n) = p(Niot) p(€n), the prior on the total
population count and log-linear parameters that are assumed to be independent of each other.
We present an alternative parameterization in Appendix B which may be of particular interest
if there is prior information on the gender x age group total population counts. In particu-
lar, the gender x age group total population counts are specified as model parameters with
an associated prior distribution. However, this alternative parameterization does not permit
the estimation of the covariate-only log-linear parameters. Within our analysis, the log-linear
interaction terms are of particular interest (including the presence or absence of such inter-
actions and if present the sign of the interaction) so that we retain the parameterization that
was presented above, but in Appendix B we discuss the implications of using the alternative
parameterization.
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We do not specify the log-lincar model a priori, in terms of the log-linear interaction terms that
are present in the model, but consider a model discrimination approach. We follow the approach
of Madigan and York (1997) and King and Brooks (2001a) and extend the posterior distribution
to include the model space. In other words, we treat the model itself as a discrete parameter,
given the observed data, and form the joint posterior distribution over both the model and the
parameter space, denoted by 7(Niot, Om,m|Nops). The (marginal) posterior model probability
for model m, given the data, can be expressed in the form

W(minobs)oc Z W(Nt()la Hﬂ”)ymlnobs)den’la
S Om Not

where the denominator once again ensures that the sum of the posterior distribution over ad-
missible models is equal to 1. In addition, we can also calculate the posterior (model-averaged)
distribution of the population sizes, accounting for both parameter and model uncertainty.
For example, the posterior model-averaged distribution for the number of IDUs for the total
population size is given by

T (Ntot Mobs) = Z T(Niot |Bobs, 1) T (11| Nobs ),

m

where m(Niot|Nops, 717) denotes the marginal posterior distribution for Nyt under model m.

Model averaging can also be performed within a classical framework (Buckland et al., 1997;
Hook and Regal, 1997). However, identifying the set of models with reasonable support to
include can be difficult, particularly for large model spaces. In addition, irrespectively of using
a Bayesian or classical approach, care should be taken when providing model-averaged point
estimates. In particular, in the case where competing models with large support provide very
different estimates of the parameter(s) of interest, the corresponding model-averaged point
estimate could lie in an area of little or no support. In a Bayesian framework such circumstances
can usually be identified in terms of a multimodal marginal posterior density of the parameter(s),
and this may be of interest in itself (see for example King, Morgan, Gimenen and Brooks (2009)).
For further general discussion of model averaging, see for example chapter 6.5 of King, Morgan,
Gimenen and Brooks (2009) and Burnham and Anderson (2002).

3.2. Prior expert information

External information is available that can be combined with expert prior beliefs to provide an
informative prior in relation to the total number of IDUs, Nyo. In particular, we have indepen-
dent data relating to the number of DRDs for each region between 2004 and 2007 and prior
beliefs relating to the annual DRD rate for injectors. The totality of DRDs includes those with
any combination of heroin or morphine, methadone, cocaine, benzodiazapines and alcohol in
their systems at the time of death. We make the following decisions regarding the classification
of DRDs as pertaining to current injectors to obtain an estimate of the proportion of injecting
DRDs in each region. We assume that current IDUSs are only those with any heroin or mor-
phine in their system (irrespectively of any other drugs identified). Note that we do not include
methadone-only deaths (i.e. no heroin or morphine identified) in our definition of injecting
DRDs since methadone-only DRDs may occur preferentially to those enrolled in opiate sub-
stitution therapy or to those for whom methadone was not prescribed. Individuals taking a
mixture of methadone and heroin or morphine are already identified within the HRDs. The
corresponding mean annual number of HR Ds from 2004 to 2007 recorded by year of death (sce
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Table 2. Mean number of HRDs per year of death for each region by using data from the
four calendar years 2004-2007

Region Total Males, Females. Males, Females,
15-34 years  15-34 years  35-64 years  35-64 years

East of England 62.75 21.0 3.75 33.0 5.0
East Midlands 64.75 28.5 4.75 27.0 4.5
London 59.5 22.5 4.25 27.25 5.5
North East 39.25 24.5 3.5 9.5 1.75
North West 124.25 49.0 6.25 56.5 12.5
South East 124.0 52.5 10.0 49.75 11.75
South West 111.75 47.75 10.0 46.75 7.25
West Midlands 79.25 34.25 5.25 33.5 6.25
Yorkshire and Humber  107.25 61.75 7.0 33.25 5.25
England 772.75 341.75 54.75 316.5 59.75

www.rss.oryg.uk/policy ‘Registration of deaths in England and Wales’) for each region is
provided in Table 2.

To form the prior on the total IDU population size, we couple this information with the prior
beliefs relating to the annual injecting DR D rate. We specify a symmetric 90% interval for IDUs’
annual injecting DRD rate of (0.3%, 1.29) with a median of 0.6% (this prior was informed by
the analysis of Merrall ef al. (2012) of DRD rate for drug treatment clients in Scotland from
1996-2006 and by Scotland’s injectors as analysed by King, Bird, Hay and Hutchinson (2009)).
We note that injecting DRD rates are generally higher for older individuals and for males
(Merrall et al., 2012; Cornish et al., 2010), and it is possible to consider different prior intervals
for different cross-classified groups (using an alternative model reparameterization, as discussed
in Appendix B). However, to avoid increased variability of annual estimates, and explicitly to
model the gender x age group interaction, we specify a relatively wide interval for the overall
injecting DRD rate.

3.3.  Prior distributions

We initially specify priors on the log-linear parameters where we do not have any prior infor-
mation, before we consider the parameter on which there is some expert prior belief: the IDU
population size. We complete the prior specification with the prior model probabilities in terms
of the interactions that we present in each model. For each individual region and each possi-
ble log-linear model we follow King and Brooks (2001a) and specify a hierarchical N(0, o 1)
distribution on the set of log-linear parameters in the model and use the non-informative prior
o2 ~T10.001,0.001). This implies that, given that a two-way interaction is present in the
model, there is an equal prior probability that the interaction is positive or negative. See King
et al. (2003) for an alternative prior specification if there is expert prior belief for a positive or
negative interaction.

To represent the expert prior information on the total population size Niot, we specify a
log-normal prior independently over models, because the prior information is specified in mul-
tiplicative form, which results in a skewed distribution. For example, suppose that for a given
region the mean annual number of HRDs is X. We specify a prior on the logarithm of the total
number of IDUs for the region to be normally distributed with mean log(X/0.6%) (so that
the prior median is accurately reflected) and variance 0.1776 (to reflect the specified prior 90%
interval).
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Finally, we specify a prior over the model space. We define the set of possible models to be
those models with a maximum of second-order interaction terms (essentially specifying a prior
probability of 0 for all higher order interaction terms). This allows interactions between two
sources, two covariates and one covariate and one source. For example, this permits a two-
way interaction between DIP community assessment and drug treatment data, so that being
observed by DIP community assessment makes it more or less likely to be observed within
the drug treatment data. Clearly, the aim of DIP community assessment work 1s to increase
the number of individuals receiving treatment, so a positive interaction is desired. However, as
stated above, we specify an equal prior probability on each two-way interaction being positive
or negative, given that the interaction is present in the model. Similarly, a two-way interaction
between gender and drug treatment data would be interpreted as male IDUs being more or less
likely (than females) to be receiving treatment for drug addiction.

Considering two-way interactions only significantly reduces the number of possible hierarchi-
cal log-lincar models and aims to focus on the most important direct interactions between the
different sources and/or covariates and to retain epidemiologically interpretable models without
data dredging. Without any strong prior information relating to the two-way interactions that
may be present we specify a prior probability of (.5 that each interaction is present in the model,
but we note that the interactions that are identified within the analysis are of direct interest
particularly in terms of any relationships between the different criminal justice sources and/or
drug treatment agencies. The specified prior induces an equal prior probability for each possible
model in the set of plausible models.

To assess the sensitivity of the posterior estimates of the number of IDUs on the above prior
specification, we conduct a prior sensitivity analysis (see Section 4.4) and compare the results
that are obtained. Firstly, we consider the sensitivity of the posterior with respect to the priors
specified on the model parameters, using an uninformative prior specification in the form of
uniform priors on the total population count and standard deviation of the log-linear variance
term. Secondly, we remove the restriction of considering only two-way interaction terms and
allow all possible hierarchical log-linear models, including for example three-way interactions,
with each model equally likely (and note that this increases the prior probability of two-way
interactions being present in the model).

3.4. (Reversible jump) Markov chain Monte Carlo algorithm

The posterior distribution is defined over both parameter and model space, so we implement a
reversible jump Markov chain Monte Carlo (MCMC) algorithm (Green, 1995) since the pos-
terior distribution is multi-dimensional (as the number of parameters differs between models).
The advantage of the reversible jump algorithm is that the Markov chain simultancously ex-
plores the parameter and model space. This means that we do not need to fit each possible model
individually. Irrespectively of the number of possible models, only a single chain is necessary
(though typically, as the model space increases, so does the length of the Markov chain that is
needed). Within the algorithm, we use a two-step procedure.

Step I: conditional on the model, we cycle through each individual parameter in turn and
propose to update the parameter by using a Gibbs or Metropolis-Hastings step (note that
we also simulate population counts for each gender x age group cross-classification from the
posterior conditional distribution).

Step 2: update the model by using a reversible jump step by adding or removing a log-linear
interaction term from the model.

We consider each step in turn.

RLITO001637_0009



10 R. King, S. M. Bird, A. M. Overstali, G. Hay and S. J. Hutchinson

3.4.1.  Step I: updating the parameters

We update o by using a Gibbs step, since the posterior conditional distribution is of standard
form (i.c. inverse gamma) and a single-update random-walk Metropolis—Hastings algorithm is
used for all the other log-linear parameters and total population size. See Brooks (1998) for a
general description of these algorithms and King and Brooks (2001a) for the specific application
to the log-linear parameters. We note that, not only is the total population size of interest, but
also the population sizes for each gender x age group cross-classification. These can be casily
obtained within the MCMC algorithm by simply simulating these population sizes from their
posterior conditional predictive distribution at each iteration of the Markov chain. In particular,
we have that

Dynobs | Niots €, Bobs ~ multinomial(No — 7, Qunobs),

where Qunobs = {95, ayunobs 1 9 € {M, F},a € {15-34,34-65} } and
9(g, a)y:unobs = P(g, a):(]/z Py, a)0-
g,4a

In other words g, 4)-unobs denotes the probability that an individual is of gender g and in age
group a given that they are not observed within the study.

3.4.2.  Step 2: updating the model

To update the log-linear interaction terms within the model we use a reversible jump step
(Green, 1995). For a single reversible jump step, we propose to add or remove a single two-way
interaction term (since we consider only models with two-way interactions). We choose each
log-lincar interaction with equal probability. If the parameter is in the model, we propose to
remove the parameter; if it is not in the model, we propose to add the parameter. Suppose
that we propose to add a given two-way interaction parameter. We propose a candidate value
from a proposal distribution ¢, which in this case is a normal distribution. The corresponding
proposal mean is obtained by using the posterior mean of the given parameter from a pilot
MCMC run in the model containing all two-way interactions. The proposal variance is chosen
via pilot tuning. The corresponding acceptance probability reduces to the ratio of the likelihood
function of the proposed and current parameter values respectively, multiplied by the ratio of
the prior density function to the proposal density function for the newly proposed log-linear
parameter (the Jacobian is equal to 1). See King and Brooks (2001a) for further details by using
an analogous approach and Forster et ¢l (2012) and Papathomas et al. (2011) for alternative
reversible jump implementations.

For each region, the reversible jump MCMC algorithm is run for a total of 10 million iterations
with the first 10% discarded as burn-in. For memory storage purposes the observations are
thinned every five iterations. Three independent replications using overdispersed starting points
obtained similar results (all with the same interpretation) so we conclude that the algorithm has
sufficiently converged. Additionally, using the Brooks—Gelman—Rubin statistic on the missing
cell entries provided no evidence for lack of convergence. The mean acceptance probabilities
for adding or removing the log-linear terms lay around 1.5% for each of the regions (the mean
values ranged from 0.7% to 2.5%). The mean acceptance values are not high, but this is partially
explained by many of the log-linear terms having either a very high probability of being present
or not being present (Table 3), so removing or adding such terms respectively was largely rejected
in the reversible jump chain. In other words, taking into account the number of possible models,
there was relatively little uncertainty in the parameters that were in the model.
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Fig. 1. Posterior distribution for the total population size for each region ( ) and the corresponding

prior distribution (-): (@) East of England; (b) East Midlands; (c) London; (d) North East; (e) North West;
(f) South East; (g) South West; (h) West Midiands; (i) Yorkshire and Humber

4. Resulls

4.1. Estimating the number of injecting drug users

Fig. 1 provides plots of the prior and (model-averaged) marginal posterior distributions for
the number of IDUs in each region. These model-averaged density estimates appear to be uni-
modal, so models with reasonable posterior support appear to provide similar estimates of
population size. For regions the East Midlands, London, the North East, North West, West
Midlands and Yorkshire and Humber, the priors generally appear to underestimate the num-
ber of IDUs in the regions. The most significant difference between the prior and posterior
distributions is clearly for London with virtually no overlap between the prior and poste-
rior distributions. This would potentially suggest, for these regions, and London particularly,
that
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Table 3. Posterior mean and 95% symmetric credible interval (in parentheses) for the total number of IDUs
in each region and each cross-classification of gender and age and aggregated to the England level by using
a Monte Carlo approach (rounded to the nearest 10)

Region Total Resutlts for the following groups:

Males, Females, Males, Females,
15-34 years 15-34 years 35-64 years 35-64 years

East of England 11000 5120 1680 3420 780
(9450, 12680)  (4340,5950)  (1370,2000) (2790, 4050) (610, 950)
East Midlands 15490 9030 2280 3460 720
(13540, 17540) (7860, 10230)  (1860,2760) (2950, 4000) (560, 900)
London 39390 14430 4630 16770 3570
(27870, 50060) (10050, 18730) (3090, 6200) (11770, 21520) (2430, 4750)
North East 11650 7350 2220 1680 390
(9940, 13540)  (6250,8570)  (1810,2650) (1290, 2050) (280, 490)
North West 34770 13250 5560 12580 3370
(30920, 38780) (11810, 14740) (4890, 6260) (11120, 14090) (2930, 3820)
South East 15930 7230 2760 4660 1290
(12550, 23720) (5690, 10670)  (2120,4120) (3570, 7020) (960, 1960)
South West 19320 8680 3550 5470 1620
(16980, 22040)  (7610.9860)  (2970.4140)  (4740,6310) (1330, 1910)
West Midlands 16930 9480 2890 3580 990
(15100, 18850) (8460, 10540)  (2510,3270) (3130, 4040) (820, 1150)
Yorkshire and Humber 31360 17040 6530 6190 1590
(27710, 35110) (15100, 19060) (5710, 7370)  (5400,7000) (1360, 1830)
England 195840 91610 32100 57810 14320

(181700, 210480) (85610, 97950) (29760, 34550) (52260, 63420) (12910, 15800)

(a) the number of injecting DRDs is an underestimate and/or
(b) the injecting DRD rate is lower than the prior expert beliefs.

We return to this issue below when discussing the posterior injecting DR D rates.

Table 3 provides the posterior estimates for the total population size and each combination
of gender x age group cross-classifications for each of the regions, in addition to the corres-
ponding population sizes for England (i.c. posterior estimates summed over each region). The
posterior mean of the total current injector population for England can be easily calculated as
the sum of the posterior means of the estimates for each region. However, the corresponding
credible intervals at the England level cannot be obtained directly from the credible intervals for
each individual region. For example, summing the 2.5% quantiles (which are used for the lower
bound of the 95% credible interval) over all regions will not give the corresponding 2.5% quantile
for England (the value obtained would be for a much lower quantile for the total population
size for England). We can obtain the 95% credible interval at the national level by considering
a Monte Carlo approach. Recall that the regional data sets are analysed independently of each
other, so the posterior (marginal) distributions of the population sizes are independent across
regions. To obtain a sample observation from the posterior distribution of the population size
for England, we simply take a sample observation of the number of IDUs from each region
and sum these values. By repeatedly sampling from the set of regional posterior distributions
for IDU population sizes, we can obtain, for England, a Monte Carlo estimate for the credible
intervals of interest.

From Table 3 we see that three regions (London, the North West and Yorkshire and Humber)
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appear to have significantly higher absolute numbers of IDUs. In addition, consistently, there is
a larger estimated number of males than females in each region for each age group considered.
Overall, the posterior mean ratio of males to females (aggregated to the England level) 1s 3.22
with corresponding 95% symmetric credible interval (3.02, 3.38). The posterior mean male-to-
female ratio over the regions ranges from 2.74 (South West) to 4.19 (East Midlands). Capture
propensities also appear to differ between regions, in terms of the proportion of individuals
who are observed by at least one source. Injectors in London have the least propensity of being
observed (posterior mean (.21 with 95% credible interval (0.16, 0.28)), IDUs in the South
West the highest propensity (posterior mean (.46 with 95% credible interval (0.40, 0.51)). The
posterior means for all other regions lay within the range (0.31-0.40).

For comparison with the estimate of the number of IDUs in England in Table 3 by aggregating
the posterior regional estimates, we perform a further analysis where we aggregate the raw data
across the Government Office regions and analyse the resulting contingency table by using the
same Bayesian approach. To analyse these data, we use the same prior beliefs as before, which
provide a prior median for the total population size of 128792 with 90% interval (64396,
257583). This lower bound is actually less than the number of observed IDUs (see Table 1).
The corresponding posterior mean (rounded to the nearest 10) of the total population size 1s
209 820 with 95% symimetric credible interval (197930, 222200). Thus, the regionally derived
England estimate (i.c. obtained by aggregating the posterior regional estimates) is gencrally lower
than that obtained when analysing the data without heed to the regional component (although
there is some overlap between the credible intervals). If we consider the corresponding estimates
for the cross-classifications when aggregating at the data level we obtain posterior means and
95% symmetric credible intervals (rounded to the nearest 10) for males aged 15-34 years of
96440 (90960, 102 100), for females aged 15-34 years of 36940 (34480, 39430), for males aged
35-64 years of 59830 (56190, 63620) and for females aged 35-64 years of 16610 (15380,
17810). The posterior estimates for males are fairly consistent with the regionally derived
England estimates in Table 3 (with significant overlap between the credible intervals), but esti-
mates were higher for females. In other words, allowing for heterogeneity at the regional level
results in lower estimates for female TDUs.

A previous estimate for England (using the same capture-recapture data but analysed at the
DAT level) obtained by Hay et ¢l (2009) is significantly lower, with a point estimate of 129980
and 95% confidence interval (125790, 137030), rounded to the nearest 10. Estimates aggregated
at the Government Office regions are also generally smaller (with the exception of the South
East). We return to possible reasons for this apparent discrepancy in Section 4.3 when we dis-
cuss in detail the interactions that were identified for each of the Government Office regions.
Alternatively, using a Bayesian evidence synthesis approach to estimating the prevalence of
hepatitis C virus infections, de Angelis et al. (2009) provided a posterior median for the current
IDU population in 2003 for England and Wales of 217000 with 95% credible interval (157000,
309000), which is broadly consistent with our estimate when taking their inclusion of Wales into
account. The same analysis also provided estimates for London and the North West, with pos-
terior means of 38000 and 23000 with 95% credible intervals (30000, 48000) and (14000, 38000)
respectively, which again appear to be largely consistent with the estimates that were obtained
by using only the capture—recapture data here if only because of wide uncertainty. For example,
the estimate by de Angelis ez ¢l (2009) for the North West has a relatively much wider credible
interval than does ours. Finally, we note that Hickman ez a/. (2004) provided a capture-recapture
estimate for London of 34400, for the slightly earlier year of 2001 for those aged 15-44 years.

Table 4 relates the centrally estimated number of current injectors to regions’ mid-2005 pop-
ulation aged 15-64 years, since the regions differ in population size. England has an estimated
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Table 4. Current injector totals set in context by regions’ mid-2005 population aged 15-64 years and
estimated ratio of young to old (i.e. 15-34 to 35-64 years) for each gender in each regiont

Region Mid-2005 Posterior Posterior Posterior Posterior
population  mean of current  mean of current  mean of male  mean of female
{x1 03 ) injectors injectors to injector ratio injector ratio
aged 15-64 {per 1000) nearest 50 by age group by age group
years population aged (15-34/35-64  (15-34135-64
15-64 years years) years)

East of England 3604.0 3.1 11000 1.50 2.15
(2.6, 3.5) (9450, 12700)  (1.32,1.76) (1.83,2.52)

East Midlands 2839.0 5.5 15500 2.61 3.17
(4.8, 6.2) (13550, 17550) (2.41, 2.82) (2.72,3.58)

London 5269.0 7.5 39400 0.86 1.30
(5.3.9.5) (27850, 50050)  (0.76, 0.97) (1.13, 1.48)

North East 1686.1 6.9 11650 4.40 5.85
(5.9, 8.0) (9950, 13550) (3.80,5.47) (4.46, 7.50)

North West 4497.0 7.7 34750 1.05 1.65

(6.9, 8.6) (30900, 38800)  (1.01, 1.10) (1.54,1.77

South East 5338.0 3.0 15950 1.56 2.15
(2.4.4.4) (12550, 23700) (1.45, 1.66) (1.92,2.37)

South West 32527 5.9 19300 1.59 2.20
(5.2, 6.8) (17000, 22050) (1.51, 1.67) (2.03,2.38)

West Midlands 3499.9 4.8 16950 2.65 2.92
(4.3. 5.4) (15100, 18850)  (2.46, 2.83) (2.58,3.32)

Yorkshire and Humber 3325.7 9.4 31350 2.75 4.11

(8.3, 10.6) (27700, 35100)  (2.61, 2.90) (3.76. 4.48)

England 333114 5.9 195850 1.59 2.24
(5.5, 6.3) (181700, 210500)  (1.51, 1.67) (2.12. 2.36)

+95% credible intervals are given in parentheses.

5.9 cuarrent injectors per 1000 of the population aged 15-64 years (with 95% symmetric credible
interval 5.5-6.3). The estimated injector prevalence 1s low (posterior mean around 3) in the East
of England and the South East, high (posterior mean around 7.5) in London, the North East
and the North West and very high (posterior mean around 9) for Yorkshire and Humber. How-
ever, it is an encouraging sign for London and the North West (with high prevalence rates) that
their injector age group ratios (15-34 to 35-64 years) are relatively low compared with England
as a whole (posterior mean 1.59 for males and 2.24 for females; and see Millar ez al. (2006) for
further detailed discussion of problem drug use in the North West up to 2001). Regions with
high injector ratios by age group may have experienced later diffusion with younger injectors
predominating. These regions include the East and West Midlands, North East and Yorkshire
and Humber, the last of which is also beset by the largest overall injector prevalence per 1000
of the population aged 15-64 years.

4.2. Injecting drug-related death rates

We obtain a sample from the posterior distribution for the injecting DRD rates by taking the
ratio of the mean annual number of HRDs (as provided in Table 2) with the total number of
IDUs for each gender x age group cross-classification at cach iteration of the Markov chain. The
corresponding posterior mean and symmetric 95% credible interval of the injecting DRD rates
are provided in Table 5. Recall that the prior 90% interval on the injecting DR D rates was (0.3%,
1.2%). We comment first at the England level and observe that the posterior injecting DRD rate
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Table 5. Posterior mean and 95% symmeitric credible interval {in parentheses) for the injecting DRD rate,
in each region and each cross-classification of gender and age

Region Total (%5) Results (%5 ) for the following groups:

Males, 15-34 Females, 15-34 Males, 35-64 Females, 35-64

years years years years
East of England 0.57 0.41 0.23 0.97 0.65
(0.49, 0.66) (0.35, 0.48) (0.18, 0.27) (0.80, 1.16) (0.51,0.79)
East Midlands 0.42 0.32 0.21 0.79 0.63
(0.37,0.47) (0.28,0.36) (0.17, 6.25) (0.67,0.90) (0.48,0.77)
London 0.15 0.16 0.09 0.17 0.17
(0.11, 0.20) (0.11, 0.21) (0.06, 0.13) (0.12,0.22) (0.11, 0.21)
North East 0.34 0.34 0.16 0.57 0.46
(0.29,0.39) (0.28, 0.39) (0.13, 0.19) (0.45,0.72) (0.34, 0.60)
North West 0.36 0.37 0.11 0.45 0.37
(0.32, 0.40) (0.33, 0.41) (0.10, 0.13) (0.40, 0.50) (0.32,0.42)
South East 0.81 0.75 0.38 1.11 0.95
{0.51,0.97) (0.48, 0.90) (0.24, 0.46) (0.69, 1.35) (0.58, 1.18)
South West 0.58 0.55 0.28 0.86 0.45
(0.50, 0.65) (0.48, 0.62) (0.24, 0.33) (0.73,0.97) (0.37,0.53)
West Midlands 0.47 0.36 0.18 0.94 0.64
(0.42,0.52) (0.32, 0.40) (0.16, 0.21) (0.82, 1.06) (0.53, 0.75)
Yorkshire and Humber 0.34 0.36 0.11 0.54 0.34
(0.30, 0.38) (0.32,0.41) (0.09, 0.12) (0.47,0.61) (0.28, 0.38)
England 0.40 0.37 0.17 0.55 0.42
(0.37,0.42) (0.35, 0.40) (0.16, 0.18) (0.50, 0.60) (0.38, 0.46)

1s at the lower end of the prior distribution informed by the Scottish analyses. We note that
the overall posterior estimate for the injecting DRD rate is lower than that presented by Bloor
et al. (2008) who investigated the ‘Scottish effect’ of higher DRD rates in Scotland compared
with England and offered an estimate for Scotland of 0.8% (with 95% uncertainty interval 0.5—
1.2% by using data from 2001-2005); our estimated injecting DRD rates for England indeed
fall below the lower end of their uncertainty interval. In addition, the injecting DRD rate in
England appears to be significantly lower for younger than older injectors: for males, a posterior
mean of 0.37% for the younger age group compared with 0.55% for the older age group with
non-overlapping credible intervals and likewise for females, with posterior means of 0.17-0.42%
for the younger and older age groups. We note that the previous Scottish analysis of King, Bird,
Hay and Hutchinson (2009), using data from 2003-2005, estimated significantly higher injecting
DRD rates for the cross-classified groups in Scotland but, unlike this analysis, identified a lower
female injecting DR D rate only for young injectors with no gender differential for older injectors.
For England, more definitively than for Scotland, we observe that older females’ injecting DRD
rate 1s also significantly lower than for older males (posterior mean 0.42% versus 0.55% with
non-overlapping credible intervals). See King, Bird, Hay and Hutchinson (2009) for further
details and results relating to the analyses of the Scottish data. Finally, we note that England’s
overall injecting DRD rate, as defined by us, appears to be similar to the DRD rate of 0.36%
that was reported by Merrall ef al (2012) for all Scotland’s drug treatment clients in the five
years to the end of March 2006, although this estimate for Scotland relates to problem drug
users who had sought treatment and who included non-injectors.
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We now consider the results at the regional level. Comparing the results in Table 5 with the
90% prior interval for injecting DRD rate, it is clear that the London result appears to be the
most at odds with these prior beliefs, with the upper 97.5% posterior quantiles of injectors’ DRD
rates lower than 0.3% (the lower 5% prior quantile) for each gender x age group. Comparing the
prior and posterior distributions of numbers of IDUs in Fig. 1 we see very little overlap between
these distributions. The significantly higher posterior estimate of the population size (compared
with the prior specification) consequently produces the lower estimates of the injecting DRD
rates.

For all regions, the lowest injecting DRI rates are for females in the younger age group
(15-34 years), with many regions having an injecting DRD rate in the lower 5% quantile of the
prior interval. Overall, the females injecting DRD rates are generally lower than for the males.
The older age group (35-64 years) has a higher injecting DRD rate for both males and females,
relative to the younger age group (15-34 years). This appears to be broadly consistent with other
studies showing increased mortality rates for older individuals and males (Cornish et al., 2010;
Merrall et al., 2012).

The difference in the injecting DRD rates across the different regions could be a result of

(a) a genuine artefact across the regions,

(b) misestimation of the number of IDUs (i.e. the denominator),

(c) misclassification of the number of injecting DRDs (i.e. the numerator) or

(d) misestimation of the number of IDUs and misclassification of the number of injecting
DRD:s.

It is not possible to rule out either misestimation or misclassification. As discussed in Section
1 there may be some heterogeneity with respect to the misclassification of injecting DRDs, e.g.
in the recording of the presence or absence of heroin or morphine and/or methadone, based
on the presence of toxicology or based on whether it was implicated in the death. In addition
(except for London as we discuss in Section 4.4) the regional estimates obtained are insensitive
to the priors that were specified on the parameters and models, which suggests that significant
misestimation 1s unlikely. Thus, assuming that there are some genuine regional differences in the
risk of mortality for IDUs, three regions in Table 5 (the East of England, South East and South
West) had particularly high injecting DRD rates, the first two of which (the East of England and
South East) can be seen from Table 4 as regions with the lowest prevalence of current injectors
per 1000 of the population aged 15-64 years.

4.3. Marginal log-linear probabilities

The corresponding marginal posterior probability that each covariate is present in the model
for each separate region is provided in Table 6. Note that we identify ‘positive” evidence for a
Bayes factor of 3 or greater, for the presence of an interaction, corresponding to a posterior
model probability 0.75 or greater, and ‘strong’ evidence for a Bayes factor of 20 or greater,
or posterior probabilities 0.95 or greater (Kass and Raftery, 1995). There are several points
of interest. Multiple interactions are clearly important across all (or the majority of) regions,
namely 51 x 55 (probation x DIP prison data), 5; x S5 (probation x drug treatment data), S» x
G (DIP prison data x gender) and S4 x 4 (DIP community assessment data x age). For all these
interactions, the sign of the interaction is consistent across regions, in particular, a decreased
probability of being observed by DIP prison data for females, a decreased probability of being
observed by DIP community assessment data for the older age group and positive interactions
for S| x Sy and S| x S3, indicating, as we would perhaps expect, an increased probability of being
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Table 6. Marginal posterior probability for each two-way interaction being present in the model for each
regiont

Interaction Results for the following regions:
East of East London  North  North  South  South West Yorkshire and
England  Midlands East West East West  Midlands Humber

Source x source

S1x 8 0.996 1.000 1.000 1.000  1.000 1.000  1.000 1.000 1.000
S x 83 0.998 1.000 0.951 1.600  1.000  1.000  0.988 1.000 1.000
S x 83 0.068 0.049 0.994 0.160 0.055 0.281 0.076 0.086 0.981
NES 1.000 1.000 1.000 1.000 1.000 0486 1.000 1.000 1.000
Sy x S84 1.000 0.999 1.000 1.000  1.000 0.095 0.690 1.000 1.000
S3 xSy 0.060 1.000 1.000 1.000  1.000 0.330  0.988 1.000 1.000
Source x covariate

S1 x G 0.050 0.168 0.226 0.061 0997 0.115  0.997 0.995 0.843
Sy x G 1.000 1.000 0.833 0985 1.000 0998  1.000 1.000 1.000
S3x G 0.971 0.959 0.953 0.171 0.033  0.039  0.117 0.060 0.031
Sy X G 0.119 0.470 0.379 0.957 1.000 0916 1.000 0.955 1.000
SixA 0.657 1.000 0.109 0.816 1.000 0981 1.000 0.967 0.986
Sy x A 0.929 1.000 1.000 0.537 1.000 1.000 1.000 1.000 1.000
Sy x A 0.117 0.054 0.999 0.262 0.026 0.045 0.062 0.061 0.055
Sy x A 0.993 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000

Covariale X covariate
GxA 0.997 0.787 1.000 0.867 1.000 0.999 1.000 0.489 1.000

tRecall that S} = probation, $; = DIP prison assessment data, 53 = drug treatment data, S4 = DIP community
assessment data, G = gender and 4 = age.

observed within DIP prison data and drug treatment data if an individual is observed within
probation (individuals released from prison are often placed on probation and drug treatment
can be a requirement of probation).

Similarly there is a set of interactions, each of which is identified in a majority of regions. These
are Sy x Si (probation x DIP community assessment data for all regions except the South East),
S> x Sy (DIP prison data x DIP community assessment data for all regions except the South
East and South West, though there 1s posterior uncertainty in the South West), S3 x S4 (drug
treatment data x DIP community assessment data for all regions except the East of England
and the South East), S| x 4 (probation x age for all regions except the East of England and
London), $» x A4 (DIP prison data x age for all regions except the North East), G x 4 (gender
x age identified in all regions except the West Midlands). Once more, for the regions where
the interaction is identified the sign of the interaction is consistent. We note that the positive
interaction S3 x Sy (treatment data x DIP community assessment data), as identified in all
regions except the East of England and the South East, is a highly desired cross-linkage via
increased uptake of drug treatment for individuals in DIP community assessment programmes.

There are some further discrepancies over the different regions regarding the presence of
particular interactions. These include the following.

(a) London and Yorkshire and Humber are the only regions to identify the interaction S> x S3
(DIP prison assessment data x drug treatment data), despite large investment in the DIP
initiative to lead to increased drug treatment. As we would expect, when this interaction
isidentified, 1t is positive. The lack of identification of this interaction is disappointing for
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other areas, as there does not appear to be the prison—drug treatment centre links made
that are intended.

(b) London is the only region that identifies the interaction S3 x A, with older individuals
more likely to be observed by the treatment data. However, for this region, the interaction
S1 x Aisnotidentified whereby, in other regions, fewer younger individuals are identified
via source S (probation).

(¢) The East of England, East Midlands and London identify an interaction S3 x G (drug
treatment data x gender) but no interaction between Sy x G (DIP community assess-
ment data x gender). For these regions, there is an increased probability for females to
be observed within drug treatment agencies but no support for the interaction S x G,
identified by all other regions, wherein there is a decreased probability of females being
observed in DIP community assessment programmes.

(d) The North West, South West, West Midlands and Yorkshire and Humber are the only
regions to provide positive support for the interaction S; x G (probation x gender) with
a decreased probability of being observed within probation for females.

Finally, we return to the comparison of results that were obtained within this analysis and
those of Hay et al. (2009), who considered the same data but analysed at the DAT area level.
Within their analyses, they did not include the covariate information and considered only the set
of log-linear models with a maximum of two source x source interactions (a total of 22 models).
Typically, the model with lowest Akaike information criterion value was chosen (although see
Hay et al (2009) for more specific details) and the corresponding estimate for the total population
was as given by the chosen log-linear model. For all Government Office regions, except the South
East, the number of source x source interactions that were identified in our models typically lies
between 4 and 6. Further, all of the source x source interactions that are identified with large
posterior support for each region have a posterior mean that is positive. Thus, not including such
interactions (as for eight of the nine regions) results in the decreased estimate of population size
obtained by the previous analysis of Hay et ¢/ (2009), rather than differences being due to the
use of the lower DAT area level data or ignoring the gender and age group covariate information.
Conversely, for the South East (where only two source x source interactions are identified with
positive support), Hay ef al. (2009) provided an overall estimate and 95% confidence interval of
13270 (10290, 16 380), which is reasonably consistent with the estimate that is provided in Table
2, with both point estimates contained in the alternative analysis’s uncertainty interval but this
is not so for any other region.

4.4. Sensitivity analyses

We present two sensitivity analyses. The first considers the prior specification on the parameters,
whereas the second considers the prior on the set of possible models. We initially consider the
prior specification on the parameters, and the set of models allowing only two-way interaction
terms with each possible model equally likely, as in the previous analysis. We specify a uniform
prior on the total population size and set the standard deviation of the log-linear terms to be
uniform, with a suitable large upper limit (Gelman, 2006). In particular, we set o~ U[0, 100].
The reversible jump MCMC algorithm is run for each of the different regional contingency
tables, and the aggregated England data sect. The posterior distributions that were obtained
for the majority of analyses (all except London) are very similar for those obtained for the
previous informative priors (for example, estimated posterior means for the total number of
1D Us within 4% of each other and the same interactions are identified as before), suggesting
that the posterior distribution in these cases are data driven. For London, larger estimates are
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obtained (approximately 19% higher), which suggests that the informative prior specification
had some influence on the posterior estimates in this region.

Secondly, we remove the restriction on the models considered within the analysis and allow
higher order interactions. We specify an equal prior probability for each possible hicrarchical
log-linear model, retaining the previous informative priors, and run a reversible jump MCMC
algorithm for each of the Government Office regions and for the aggregated England data.
We initially discuss the estimates that were obtained at the England level for both the results
aggregated by using the regional level data and the results obtained by aggregating at the data
level.

The estimated posterior mean of the total number of IDUs (to the nearest 1000) obtained
by aggregating the estimates obtained from the analyses of the regional data is 191000 with
95% posterior credible interval (176000, 210000), which is slightly lower than the previously
obtained estimate by using only two-way interactions, but with large overlap between the cred-
ible intervals. Analysis of the data aggregated to the England level before model fitting obtains
a posterior mean total estimate (to the nearest 1000) of 211000 with 95% symmetric credible
interval (198000, 224000). This is slightly higher than the estimate that was obtained when con-
sidering the regional data but with overlapping credible intervals. We note that there is positive
posterior support for only one three-way interaction, S; x S» x G (probation x DIP prison data
x gender), with females having an increased probability of being observed by both sources.

We now consider the results that were obtained at the regional level. For all the regional
level data sets, except for London, the estimated posterior means for the cross-classified (and
total) number of IDUs all lic within 10% of the results that were obtained by using only two-
way interaction terms (with the majority lying within 5%), although there are some differences
with regard to interactions observed to be present. Unsurprisingly, the 95% posterior credible
intervals are generally slightly wider, representing the additional model uncertainty. For Lon-
don, the estimated total number of IDUs is significantly lower, with a posterior mean of 26430
with 95% symmetric credible interval (17490, 42830), which still has significant overlap with
the previous estimate. The decrease in estimate (approximately 30%) is consistent across the
gender x age cross-classifications and directly leads to the reduced overall estimate for Eng-
land. The reason for this lower estimate in London appears to be related to the identification
of a three-way interaction term between sources S» x S3 x Sg (DIP prison x drug treatment
x DIP community assessment data), but note that this interaction is not identified within any
other region. In particular, if an individual is identified by both forms of DIP data (or not ob-
served by either of these sources), they have an increased probability of being observed in drug
treatment.

Allowing this interaction to be present removes the presence of the two-way interaction be-
tween probation and drug treatment data within London (which is clearly identified as being
present in all other regions). Alternatively, for the North West, South West, West Midlands
and Yorkshire and Humber regions, the three-way interaction between criminal justice sources
51 x Sy x 84 (probation x DIP prison x DIP community assessment data) was identified, with
an increased probability of being observed by all three sources. Further three-way interactions
that were identified were S| x Sg x A (DIP prison data x DIP community data x age) for the
South East (for the older age group a reduced probability of being observed by both sources),
S1 X 84 x G (probation x DIP community data x gender) for the South West, S» x 54 x G (DIP
prison data x DIP community data x gender) for the West Midlands and S1 x $» x G (proba-
tion x DIP prison data x gender) for Yorkshire and Humber. For all interactions identified,
females had an increased probability of being observed by both of the given sources. However,
identifying additional higher order interactions for the regions (except London) did not appear
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Table 7. Counts for the East of England

S1 S Sy Sy Males, Females, Males, Females,
voung young old old
| 0 0 0 184 58 89 29
0 1 0 0 85 6 36 *
1 1 0 0 9 * * 0
0 0 1 0 912 422 673 209
I 0 1 0 98 31 46 13
0 1 1 0 19 5 6 *
1 1 L 0 5 * # 0
0 0 0 1 166 43 67 8
I 0 0 1 24 7 13 *
0 1 0 1 6 * * *
1 1 0 1 P i * 0
0 0 1 1 41 21 16 *
1 0 1 1 10 6 6 *
0 1 1 1 9 0 0 0
| 1 1 1 * 0 0 0
Total 1574 605 962 267

Table 8. Counts for the East Midlands

SIS Sy Sy Maless Females, Males,  Females,
voung young old old
i 0 0 0 299 66 81 14
0 1 0 0 205 8 35 0
1 1 0 0 31 * 0 0
0 0 1 0 1769 651 749 220
1 0 1 0 226 64 51 9
0 1 1 0 60 * 13 0
1 1 1 0 26 * 6 0
0 0 0 1 308 72 80 9
1 0 0 1 37 7 6 0
0 1 0 1 21 0 * 0
1 1 0 1 8 * * 0
0 0 L 1 267 64 73 16
1 0 1 1 80 21 16 *
0 1 1 1 21 * ® 0
i 1 1 1 7 % 0 *
Total 3365 963 1117 272

to have a significant effect on the estimated population sizes, as noted above, yet did generally
improve the goodness of fit to the observed data.

5. Discussion

Estimating the number of IDUs and the injecting DRD rate is an inherently difficult problem
as injecting is an ostracized behaviour and yet injectors have a clear social and economic effect
within socicty. The use of data from capture-recapture studics for estimating such hidden
populations has a long history. The use of log-linecar models is appealing because of their direct
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Table 9. Counts for London

St S» 83  S4 Males, Females, Males, Females,
young young old old
1 0 0 0 121 30 125 20
0 1 0 0 127 33 90 6
1 I 0 0 7 * 5 0
0 0 1 0 1554 752 2582 789
1 0 1 0 28 14 44 5
0 1 1 0 33 6 23 8
1 1 1 0 8 * 0 0
0 0 0 1 557 144 397 84
1 0 0 { 16 5 12 *
0 1 0 1 21 5 11 *
1 1 0 1 # * * 0
0 0 1 1 184 62 171 37
1 0 1 I 8 * 11 *
0 1 1 I 20 %* 19 *
1 1 1 1 # * * *
Total 2687 1062 3492 957

Table 10. Counts for the North East

S1 S» Sy Sy Maless Females, Males,  Females,
young young old old
1 0 0 0 228 74 47 7
0 1 0 0 135 17 21 *
1 1 0 0 18 * * 0
0 0 1 0 1778 584 465 122
1 0 1 0 242 63 35 5
0 1 1 0 55 12 9 0
1 1 1 0 30 9 * 0
0 0 0 1 189 35 17 0
1 0 0 1 24 * % 0
0 1 0 1 10 * 0 0
1 1 0 1 5 * * 0
0 0 1 1 145 35 21 #
1 0 1 1 60 17 12 %
0 1 1 1 13 * 5 0
1 1 1 1 12 * 0 0
Total 2044 858 043 140

modelling (and interpretation) of interactions between the different data sources and/or covari-
ates which are likely to be present within such complex systems. The corresponding estimates
of IDU prevalence are model dependent. We implement a model averaging approach to take
into account both parameter and model uncertainty within the estimation of population size,
although there can still be dependence on the set of possible models considered.

The estimated total IDU population size in England of approximately 200000 in 2005-2006 is
broadly consistent with the previous estimate that was obtained by de Angelis ez ¢/. (2009) when
investigating the prevalence of hepatitis C but has considerably less uncertainty associated with
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Table 11. Counts for the North West
S1 S Sy Sy Males, Females, Males, Females,
voung young old old
| 0 0 0 390 113 238 58
0 1 0 0 167 25 73 11
1 1 0 0 21 * 6 0
0 0 1 0 2736 1231 2797 775
I 0 1 0 229 85 166 25
0 1 1 0 52 7 21 *
| 1 1 0 20 5 ® *
0 0 0 1 457 144 272 54
I 0 0 1 63 13 43 9
0 1 0 1 31 5 9 *
1 1 0 1 9 * * 0
0 0 1 1 323 86 215 25
1 0 1 1 139 32 47 8
0 1 1 1 33 5 7 *
1 1 L 1 8 # * 0
Total 4678 1756 3904 971
Table 12. Counts for the South East
S 08 S3 S84 Males  Females, Males,  Females,
young young old old
| 0 0 0 246 99 123 30
0 1 0 0 96 24 31 *
1 1 0 0 18 * * *
0 0 ! 0 1609 648 1101 322
I 0 1 0 160 45 83 14
0 1 1 0 43 * 13 *
1 1 1 0 17 * * 0
0 0 0 1 267 69 94 17
1 0 0 1 11 7 5 *
0 1 0 1 * * 0 0
| 1 0 1 * 0 0 0
0 0 1 1 107 33 36 8
1 0 1 1 18 5 8 *
0 1 1 1 5 * 0 0
I 1 1 1 * 0 0 0
Total 2605 940 1498 401

it. Our analysis also provides a regional dimension, offering new insights into injecting DRD
rates regionally, and to regional interactions between sources.

Providing regional cross-classified estimates of IDUs and injecting DRD rates gives more
detailed information that may be useful in assessing the regional effect of opiate substitution
therapy in reducing the risk of mortality. In addition, the risk of transmission for blood-borne
viruses may be better assessed for different cross-categories at the regional level, by providing
estimates of potential carriers. Besides providing regional estimates of IDUSs, regional differences
in terms of the underlying interactions may be of interest because they provide insight into cross-

linkages between the different sources of data and/or covariates.
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Table 13. Counts for the South West

ST S Sy Sy Maless Females, Males,  Females,
young young old old
1 0 0 0 146 35 61 6
0 1 0 0 120 26 46 *
1 1 0 0 16 0 * 0
0 0 1 0 3151 1377 2075 659
1 0 L 0 206 63 66 11
0 1 | 0 90 13 18 0
1 1 1 0 24 * 5 0
0 0 0 1 120 21 45 #
1 0 0 1 12 * 5 0
0 1 0 1 * 0 * 0
1 1 0 1 0 0 0 0
0 0 1 1 159 30 73 6
1 0 1 1 29 9 5 *
0 1 L 1 13 * * *
1 1 1 1 * 0 0 0
Total 4091 1580 2405 691
Table 14. Counts for the West Midlands
S1 S» Sz Sy Males  Females, Males,  Females,
young young old old
1 0 0 0 277 69 77 22
0 1 0 0 225 24 43 5
1 1 0 0 34 * 7 0
0 0 1 0 2252 780 958 259
1 0 1 0 239 36 58 11
0 1 1 0 92 9 10 #
1 1 | 0 53 6 6 *
0 0 0 1 312 67 68 11
1 0 0 1 44 7 15 0
0 1 0 1 37 5 # #
1 1 0 1 10 * * *
0 0 1 1 199 45 59 13
1 0 1 1 68 15 21 *
0 1 1 1 23 8 * 0
1 1 L 1 21 * * 0
Total 3886 1081 1332 328

Owing to the structure of the data, which allows for age group and gender as covariates,
population estimates can be obtained at these lower cross-classification levels within each
region and permit the identification of more complex underlying structure and/or patterns. For
example, for both male and female TDUs in the North East, an unusually high proportion are
younger individuals (15-34 years) with posterior means for the ratio of younger to older IDUs
greater than 4 (see Table 4). We also note that, consistently within each region, and aggregated
to the England level, the younger-to-older ratio is higher for females than for males, indicating
that a larger proportion of younger IDUs are female than of older IDUs. The higher proportion
of younger female IDUs was also observed by King, Bird, Hay and Hutchinson (2009) within
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Table 15. Counts for Yorkshire and Humber

S1 S Sy Sy Males, Females, Males, Females,
voung young old old
| 0 0 0 372 139 133 24
0 1 0 0 196 23 43 *
1 1 0 0 18 9 * 0
0 0 1 0 3604 1481 1388 378
I 0 1 0 364 109 95 20
0 1 1 0 99 13 14 *
| 1 1 0 36 7 ® *
0 0 0 1 676 193 174 28
I 0 0 1 100 16 27 6
0 1 0 1 41 9 5 *
1 1 0 1 10 * 0 0
0 0 1 1 538 150 144 28
1 0 1 1 281 58 46 5
0 1 1 1 52 * 8 *
| 1 1 1 26 9 7 0
Total 6413 2221 2089 498

Scotland. We note that, in this analysis, the capture-recapture data for each region were assumed
to be independent of each other. It is possible to consider a single integrated analysis with the
region itself as a categorical covariate within the analysis, with each level of the covariate
corresponding to each region, and once more allowing interactions between the different
sources or covariates and region. This may potentially allow the borrowing of information across
the regions and is an area of current research.

The estimates of IDU prevalence can be combined with the number of injecting DRDs to
obtain the injectors’ drug-related risk of mortality. Within our analysis, we take the number of
injecting DRDs to be the average annual number of HRDs in each region which occurred over
the 4-year period 2004-2007. There is additional potential heterogeneity in terms of identify-
ing and reporting illicit drugs in post-mortem examinations. The numbers of HRDs are used
both for constructing a prior for the total population size and in calculating the injecting DRD
rate, by combining the number of HRDs with the estimated number of IDUs. It is possible to
consider adding a further level of uncertainty to the number of HRDs per region. This would
widen the prior interval specified on the total population size but would have little effect on
the posterior estimates of prevalence of IDUs since the posterior distributions are largely data
driven (although doing so may create greater overlaps between the prior and posterior estimates
of population size). Additionally, for each region, assuming a Poisson or negative binomial
distribution, say, for the annual number of HRDs (with mean equal to the annual mean
number of HRDs) would result in essentially the same posterior mean for the injecting DRD
rate (assuming that the posterior distributions for the total population sizes are unchanged), but
with a wider credible interval to reflect the additional level of uncertainty that is incorporated.

The generally lower injecting DR D rates for England than in Scotland (King, Bird, Hay and
Hutchinson, 2009) suggests that Scotland may have something to learn from the cross-linkages
that England has put in place. Discussion of regional source x source interactions with regions’
criminal justice or drug treatment practitioners may shed further light on regional implications
when local expertise is brought to bear on their interpretation. This analysis appears to offer a
broad reassurance that criminal justice and drug treatment interventions are working together.
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However, there are concerns also—particularly for those regions in which injector ratios by age
group (15-34 to 35-64 years) are high and thereby suggest an unwelcome preponderance of
younger injectors, which means that greater resistance to injecting needs to be engendered in
their young people.
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Appendix A: Data

The observed contingency tables for each region, cross-classified by gender and age, are provided in Tables
7-15. The four scurces correspond to Sy, probation data, S,, DIP prison assessments, S3, drug treatment
data, and S;, DIP community assessments.

Small observed cell sizes (i.e. cell entries with values 1-4) have been replaced by asterisks to comply with
the Home Office request relating to avoiding potential deductive disclosure.

Appendx B: Alternative model parameterization

An alternative parameterization of the model specifies the total cell counts for each gender x age group
as explicit model parameters. Such a parameterization may be desirable if expert prior information is
available at this level and the data themselves are not sufficiently informative. The corresponding log-
linear parameters are the main effect terms for each source and two-way interactions for source x source
and source x covariate combinations (the covariate-only log-linear parameters relating to main effect
covariate terms and covariate x covariate interaction term are no longer strictly estimable). We let N =
{Ng ay:ge {M.F},ae {15-34,35-64}} and py, ) denote the probability that an individual is observed
in cell k € {0, 1}%, conditional on being of gender g in age group a. The saturated log-linear model (up to
two-way interactions) for the conditional cell probabilities is given by

Pi|(g, a) X CXP(i gféi) + i i 926)2(,’) + 24: gifff)(,;g + 24: Hlf(iffa) .
i=1 =1 jeit i=1 i=1
In addition, letting ng, ,) = {0y, o« ke {0, 1}#}, for each combination of gender g and age group a,
NG, o) Nig, ay, B ~ muitinomial{Ny, o), P, )
where pi. o) = { Px|g. ) - k € {0, 1}*}. The posterior distribution of the model parameters is given by
(N, 8, 0055} 0 f(Do0s|N, 8,,) p(N, 6,,)
“{ I IT f(n(g,a)lN(g.a)vgm)}p(ngm)

ge{M, F} ac{15-34, 3564}

N, ,,-)' n(g. ayk
X ( ﬂ H “ H pkkg,)al‘,‘\) p(N7 gm)

ge{M. F} ac{15-34, 3564} Mg 10! e fo, 134
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We note that the priors are specified on the total population size for each gender x age group cross-
classification, i.e. N (and typically independently of 8,,). The corresponding MCMC algorithm would, for
example, update cach Ny, o in turn by using a Metropolis—Hastings step (analogous to that for Ny in

Section 3.4.1).

We note that prior information may not always be of the form of the total population size of each
gender x age group cross-classification, but functions of these. For example, prior information may be
available on the total population size, male-to-female ratio (denoted R) and the proportion of males (and
females) that are young (denoted by P, and P, respectively). Prior information of this form can be incor-
porated in this model parameterization by specifying a prior distribution on Ny, R, P and P, denoted by
(N, R, Py, P>}, and calculating the corresponding prior on the total population counts for each gender x
age group cross-classification, denoted by p(N), using a transformation-of-variables argument. For this

example,

and

Then, we can write

p(N):P(/Vloty R: PlﬁPZ)

R=Nown /N,
Pr=Nu, 1528 /Now

Py=Neg, 15235 /N@.

d(Nlola R, Pl,w Pz)
dN ’

where the final term corresponds to the determinant of the Jacobian. It is straightforward to show that

d(jvtot.' Ra PlaPZ) .
dN N

N, 1534

1 1 1
1 ~ Nowssg Nowoisag 0
Nan Nap Nin
,,,,, L b _Now
Ne) N N
0 0 b Neas e
Nep N,
o Nt
© NanNi,

2
Ny

In general, such results are easily obtained by using an algebraic computer package, such as MAPLE.

Finally, we note that further parameterizations are possible which may be suitable for different prior
information. For example, following on from the prior specification above, if there is expert prior informa-
tion on only Ny, and R, it is possible to express the likelihood of observed data given the total number of
males and total number of females by using an analogous approach, conditioning on gender only (instead
of gender and age group as above). The log-linear parameter corresponding to the main effect term for
gender is no Jonger estimable, but the rest of the covariate (and source) log-linear parameters are.
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