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Summary. Injecting drug users (IDUs) have a direct social and economic effect yet can typically 
be regarded as a hidden population within a community. We estimate the size of the IDU pop-
ulation across the nine different Government Office regions of England in 2005-2006 by using 
capture—recapture methods with age (ranging from 15 to 64 years) and gender as covariate 
information. We consider a Bayesian model averaging approach using log-linear models, where 
we can include explicit prior information within the analysis in relation to the total IDU popula-
tion (elicited from the number of drug-related deaths and injectors' drug-related death rates). 
Estimation at the regional level allows for regional heterogeneity with these regional estimates 
aggregated to obtain a posterior mean estimate for the number of England's IDUs of 195840 
with 95% credible interval (181700, 210480). There is significant variation in the estimated re-
gional prevalence of current IDUs per million of population aged 15-64 years, and in injecting 
drug-related death rates across the gender x age cross-classifications. The propensity of an 
IDU to be seen by at least one source also exhibits strong regional variability with London having 
the lowest propensity of being observed (posterior mean probability 0.21) and the South West 
the highest propensity (posterior mean 0.46). 
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Introduction 

We focus on estimating the prevalence in 2005-2006 of current injecting drug users (1DUs) 
mainly of opiates in England, and at the Government Office region level when cross-classified 
across gender and age (15-34 and 35-64 years). England's population of injectors rose epidem-
ically in the (late) 1980s (de Angelis et al., 2004). Opiate substitution therapy was introduced to 
reduce injection-related harms and to promote off-injecting. Quality assurance in methadone 
prescribing was achieved between 2000 and 2004 (see Strang 

et al. (2010)). A major public health 
reason to engage injectors in methadone substitution therapy is to reduce their risks of blood-
borne virus transmission and drug-related death (DRD). Methadone clients may continue to 
inject but, typically, their number of injections of illicit heroin reduces considerably (Hutchinson 

et al., 2000). Estimating the number of current IDUs at the regional and national levels (cross-
classified by gender and age) permits the estimation of the injecting DRD rate by taking the 
ratio ofthe corresponding number of deaths attributed to injectors (namely heroin-related deaths 
(HRDs)) with the estimated population size of IDUs. 

Sudden deaths (which include DRDs) in individuals within the UK. are almost always sub-
ject to a post-mortem examination to determine the cause of death. Toxicology tests are con-
ducted to identify illicit drugs within the system. Because there is no standardized proto-
col for conducting or reporting the toxicology of DR.Ds, there may be some heterogene-
ity in recording such deaths. Official statistics do not document whether the deceased per-
son had a history of injection drug use, let alone whether she or he was a current injector, 
and so we cannot know which opiate-related DRDs occurred in current injectors. (Not all 
opiate-related DRDs occur in injectors, but the majority do). It is also possible for a death 
to be recorded as a DRD even though the drug(s) made no significant contribution to the 
death, but these cases are likely to be very few for opiate-related deaths. Thus, as a reasonable 
approximation, we shall count, or attribute, all HRDs (but no methadone-only DRDs) as having 
occurred in current IDUs. We use the term injecting DRD rate to denote HRDs per 100 current 
injectors. 

To obtain estimates of the number of IDUs we use capture-recapture methods. For closed 
populations, capture-recapture methods have a long history in both ecological (Otis et al., 
1978) and epidemiological (Fienberg, 1972) applications. For an overview of the use of capture-
recapture methods in epidemiology see, for example, Hook and Regal (1995) and Chao et al. 
(2001) with recommendations on the use of such methods presented by Hook and Regal (1999, 
2000). Within epidemiology, capture-recapture studies involve collating data across a series of 
different data sources. Each source records all individuals in the target population who were 
observed by that source. Individuals are uniquely identifiable, which allows the construction 
of a contingency table wherein each cell entry corresponds to the number of individuals who 
were observed by each distinct combination of sources. However, there is an unobservable cell 
corresponding to the number of individuals who belong to the target population but were not 
observed by any source. Thus, failing to estimate this cell entry can significantly underestimate 
the true target population size, particularly with difficult-to-reach populations. To estimate the 
unobservable cell, a model is fitted to the observed data. Capture-recapture studies have been 
used in a variety of situations including for the estimation of hidden populations (Mastro et al., 
1994; Frischer 

et al., 1993; Beynon 
et al., 

2001; King, Bird, Hay and Hutchinson, 2009) and 
disease prevalence (Hook 

et al.,1980; Madigan and York,1997; Chao etal., 2001). We consider 
the commonly used log-linear models and apply a Bayesian approach that permits the use of a 
model-averaged estimate of the target population size, thereby accounting for both parameter 
and. model uncertainty (Madigan and York, 1997; King and Brooks, 200la). 
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Additional covariate information is often collected corresponding to individual characteris-
tics, such as gender, location, age and marital status. Individuals with different characteristics 
may have different propensities to be observed by different combinations of sources (King, Bird., 
Hay and Hutchinson, 2009). Covariates can be introduced as additional factors within the anal-
ysis to account for covariate heterogeneity (Tilling and Sterne, 1999; Tilling et al. , 2001). For the 
nine Government Office regions of England, we adopt a similar approach to King et al. (2005) 
by considering two demographic characteristics, each with two levels: gender and age group 
(15-34 years and 35-64 years), by which DRDs are also cross-classified. The break between 
the different age groups is chosen since 35 years and above is one of the preferred age groups 
for reporting injecting prevalence estimates at the European Monitoring Centre for Drugs and 
Drug Addiction. This age group also corresponds to the aging of young initiates into England's 
injector epidemic from the mid- to late 1980s to be in the 35-64 years age group in 2005 and 
beyond. In addition, we note that there is interest in the HRD rates per 100 current IDUs and 
the 35 years and above age group can represent 15 or more years of injecting. We do not include 
the region itself as a discrete covariate but analyse the regional data independently of each other. 
This permits a direct comparison of important interactions identified for each region. Of par-
ticular interest is not only the estimates of IDUs within and across regions, but also injectors' 
HRD rates. We use expert prior information on the injecting DRD rate, combined with infor-
mation on the regional number of HRDs, to elicit an informative prior on the total number of 
injectors. The HRDs are themselves provided across the different covariate levels, permitting 
the estimation of injecting DRD rates for the different joint covariate levels. 

In Section 2 we describe the capture—recapture data and introduce the notation that we use 
before describing the Bayesian approach that we implement to analyse the data in Section 3. 
Section 4 presents the results, with particular focus on the number of IDUs an.d associated 
injecting DRD rates. We conclude with a discussion in Section 5. 

2. Regional data 

Data that were used within the capture—recapture analyses were collected nationally across 
England in the financial year 2005-2006. These data can be disaggregated to the drug action 
team (DAT) area level. In 2005--2006, there were 149 DATs in England. For each DAT area, 
the same four sources were used to identify IDUs uniquely from which we can construct a 24
contingency table with a single unknown cell. The four sources of data were 

(a) probation, 
(b) drug intervention programme (DIP) prison assessments, 
(c) drug treatment and 
(d) DIP community assessments. 

To cross-classify individuals between the different sources the following set of common identi-
fiers was used for each contributing source of data: 

(i) forename initial, 
(ii) surname initial, 
(iii) gender and 
(iv) date of birth. 

For each source, only individuals with all four identifiers known were included. For two recorded 
cases, if all four identifers were the same (Hay et al., 2009), we assumed that they related to the 
same person either between different sources or duplicated within a single source. Geographical 
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information, such as address, postcode sector or district, was used. to allocate area. of residence. 
For further information on the sources of data see, for example, Singleton et al. (2006) and 
Skodbo et al. (2007) with particular reference to DIPs. 

DIPS are a crime reduction initiative which works across different criminal justice bodies 
(such as police, prison and probation) and drug treatment services. Assessments which record 
an individual's current drug injecting status are carried out at various points in their jour-
ney through the criminal justice system and into treatment, e.g. via drug testing while in 
police custody. The registers are comprehensive in their recording of clients either because 
they relate to formal justice processes (probation or DIP) or because they are needed for re-
imbursement (such as treatment numbers). However, for an individual client to be identified 
as an IDU it does depend on this characterization being both disclosed and recorded. In 
England, there has been major investment in DIPs, both in prisons and in the community, 
with the aim of engaging in assessment and drug treatment those who are involved in the 
criminal justice system who test positively for opiates or cocaine (for further details see Skod-
bo et al. (2007)). Regions where connections across services are made successfully would be 
revealed by the same clients tending to feature on more than one source of data and perhaps 
by lower injecting DRD rates if current injectors are successfully engaged in opiate substi-
tution therapy, of which methadone accounted for 83% in England in 2005 (Strang et al., 
2007). 

Notationally, we label the four sources S1, S2, S3 and S4, using the same order as above. 
We label each cell in the 24 contingency table by k E {0, 1 } 4, which represents the combination 
of sources that an individual is observed by. For example, cell k = {0, 1, 0, 0} corresponds to 
being observed by only source S2 (DIP prison assessments). This approach permits the indi-
vidual identifiers of gender and age group to be considered as covariate data. We requested 
that the observed individuals be cross-classified by gender and age group (15-34 and 35-64 
years) which allowed us to receive four 24 regional contingency tables, which can be written as a 
26 contingency table with each cell corresponding to the number of IDUs who are observed 
by each combination of four sources for each gender x age group classification. These contin-
gency table data were originally calculated at the DAT area level. However, there is a trade-off 
between the geographical scale that is used and the amount of information that is contained 
in the corresponding area-specific data. Regional estimates (and variability) are themselves 
of interest, yet to retain a reasonable level of information within the contingency tables for 
fitting models and obtaining estimates we requested for the DAT contingency table data to 
be aggregated to the nine Government Office region levels that had been used in previous 
Home Office reports (Singleton et al., 2006). For each of the nine regional contingency tables 
at the Government Office level, there are four unknown cell entries, corresponding to the num-
ber of individuals who were not observed by any of the sources for each gender x age group 
classification. 

For a given region, we let nobs and unobs denote the set of observed. a.nd unobserved cell 
entries respectively, and n = {nobs, unobs}. The total number of observed individuals is denoted 
by n. Further, for each individual region, we let n fig, a) denote the observed. number of individuals 
of gender g in age group a and n fig, a):k the number of individuals of gender g in age group a 
that belong to cell k E {0,1 } 4 for g E {M, F} (M = male; F = female) and a E {l 5-34,  35-64}. 
Thus, n (g, a):o = n (g, a):{o, o, o, o} denotes the number of individuals of gender g in age group a 
who are not observed (i.e. the missing cell for the given cross-classification). Additionally we let 
no = Eg, a n (g, a):{o, o, o, o} denote the total number of unobserved individuals. 

We let N(g, a) denote the total number of individuals of gender gin age group a for g E {M, F} 
and a E { 15-34, 35-64}; and N = {N(g, a) : g E {M, F}; a E { 15-34, 35-64}}, so that 

RLIT0001637_0004 



Estimating Prevalence of Injecting Drug Users and Heroin-related Death Rates 5 

Table 1. Number of unique IDUs observed in each region and each cross-classification of 
gender and age 

Rc ;ion Total Males, 
15-34 years 

Females. 
15-34 years 

Males, 
35-64 years 

Females, 
35 4 years 

East of England 3408 1574 605 962 267 
East Midlands 5717 3365 963 1117 272 
London 8198 2687 1062 3492 957 
North East 4585 2944 858 643 140 
North West 11309 4678 1756 3904 971 
South East 5444 2605 940 1498 401 
South West 8767 4091 1580 2405 691 
1 'est Midlands 6627 3886 1081 1332 328 
Yorkshire and Humber 11221 6413 2221 2089 498 

England 65276 32243 11066 17442 4525 

N(s, a) = n (g, a) + n (g, a):0 = n (g, a):k • 
kE{0, 1}4

We let Ntot = n + no = Eg, a N(g, a) denote the total number of IDUs in the given region. To 
provide a brief summary of the data, we present the observed number of unique individuals 
identified in each region in Table 1 along with the corresponding number observed for each 
combination of gender and age (i.e. n and n (g, a) for g E {M, F} and a E { 15-34, 35-64}) for each 
region. Appendix A provides the corresponding contingency tables for each region, but where 
cells entries between 1 and 4 have been omitted. 

3. Analysis 

The observed contingency table for each region is analysed independently of all other regions. 
We consider log-linear models that were initially introduced by Fienberg (1972), where the loga-
rithms of the contingency table cell probabilities are a linear sum of main effects and interaction 
terms between the sources and/or covariates (and normalized so that the sum of the cell proba-
bilities equals 1). We let O denote the main effect log-linear terms for source Si, i E { 1, 2, 3, 4}, 
at level x E {0, 1} and G the main effect log-linear terms for covariate BE {G, A} (G - gender; 
A - age) for the different levels (i.e. b E {M, F} for B = G and b E {15---34, 35-64} for B = A). 
We restrict the set of possible interactions to that of two-way interactions corresponding to 
source x source (six in total), source x covariate (eight in total) and. covariate x covariate 
(only one) interactions. These interactions remove the independence assumption between the 
different sources. For example, a two-way interaction between sources Si and S2 implies that 
being observed by source S1 (probation) increases or decreases the probability of also being 
observed by source S2 (DIP prison assessment), and similarly for all other interactions between 
sources and/or covariates. Notationally, we let ex; y 1 denote the source x source interaction 
between sources Si and Si (i, j E { 1, 2, 3, 4}, i 0 j, and x, y E {0,1 }); 0x; b the source x covariate 
interaction between source i E { 1, 2, 3, 4} and covariate B E { G, A} for x E {0,1 } and b E {M, F} 
if B = A. and b E { 1.5- 34, 35--64} if B = A; and Bh the covariate x covariate interaction for 
b E {M, F} and CE { 15-34, 35-64}. For identifiability (and prior consistency; see for example 
King and Brooks (2001b)), we specify sum-to-zero constraints over the levels of each source or 
covariate on each of the log-linear terms. For example, we specify Bo' + B1 = 0, and similarly 
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for all other source and covariate main effect terms. Similar constraints are specified on the 
interaction terms, e.g. 0S1,  2 + 0 i 1,S2 =0 for x = 0, 1. 

We let p(g,a):k denote the probability that an individual is of gender g E {M, F} in age group 
a E { 15-34, 35---64} and lies in the contingency table cell k E {0,1}4 relating to the four data 
sources. The saturated model (in terms of the presence of all main effect and two-way interaction 
terms) has log-linear cell probabilities of the form 

p (9, a):k oc exp(>2 Bk(i) +0 +0 + E E 8k(t), k(j) + F- 8k(t), g + E Bk(z) a + 89 a 
i=1 i=1j=i+1 i=1 i=1 

where k(i) is the ith element of k (i.e. the value of k corresponding to source Si). Notationally, 
we let the probability of not being observed by any source be denoted by po = Eg, a P(g, a):0• 
Submodels are obtained by setting the two-way interactions terms to be equal to 0 for all levels. 
We let the set of log-linear parameters be denoted by 0. Finally, we note that 

(nobs, no) I Ntot, 8  ^' multinomial(Ntot, gobs), 

where gobs denotes the set of probabilities of the observed cells (i.e. k E {0,1}4 \0 correspond-
ing to being observed by each combination of sources, excluding not being observed by any 
source) for each gender x age group cross-classification and probability of not being 
observed. (i.e. po). For further discussion see, for example, King et al. (2005, 2009), who con-
sidered similar models in relation to IDUs in Scotland, with region as an additional two-level. 
factor. 

3.1. Bayesian approach 
We consider a Bayesian approach and analyse the data from each region independently of all 
other regions so that, without loss of generality, we condition on a given region. For a given 
log-linear model in (in terms of the log-linear parameters in the model), we let the corresponding 
set of log-linear parameters be denoted by 0m ' We then form the joint posterior distribution 
over the set of log-linear parameters and total number of individuals in each gender x age group 
cross-classification, 

ir(Ntot, 0, Inobs)a.f(nobs,noINtot,Brn)p(Ntot, 9 m) 

Ntot! n(y, a):k np 
(Ntot - n )! gE{M, F} 

aE{15-34 35-64) kE{0,1}4\0 p(g. a).k x p0 
P(Ntot, 8 m)• 

The first terms in the posterior distribution correspond to the multinomial joint probability 
mass function of the observed cell entries given the total population count and log-linear pa-
rameters (and hence cell probabilities) and p(Ntot, em) = p(Ntot) p(9m,), the prior on the total 
population count and log-linear parameters that are assumed. to be independent of each other. 
We present an alternative parameterization in Appendix. B which may be of particular interest 
if there is prior information on the gender x age group total population counts. In particu-
lar, the gender x age group total population counts are specified. as model parameters with 
an associated prior distribution. However, this alternative parameterization does not permit 
the estimation of the covariate-only log-linear parameters. Within our analysis, the log-linear 
interaction terms are of particular interest (including the presence or absence of such inter-
actions and if present the sign of the interaction) so that we retain the parameterization that 
was presented above, but in Appendix B we discuss the implications of using the alternative 
parameterization. 
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We do not specify the log-linear model a priori, in terns of the log-linear interaction terms that 
are present in the model, but consider a model discrimination approach. We follow the approach 
of Madigan and York (1997) and King and Brooks (200 la) and extend the posterior distribution 
to include the model space. In other words, we treat the model itself as a discrete parameter, 
given the observed data, and form the joint posterior distribution over both the model and the 
parameter space, denoted by 7r(Ntot, 9„:, m mobs). The (marginal) posterior model probability 
for model rn, given the data, can be expressed in the form 

7r(mInobs)a E ir(Ntot,Br,minobs)d®nt, fo. Ntot 

where the denominator once again ensures that the sum of the posterior distribution over ad-
missible models is equal to 1. In addition, we can also calculate the posterior (model-averaged) 
distribution of the population sizes, accounting for both parameter and model uncertainty. 
For example, the posterior model-averaged distribution for the number of IDUs for the total 
population size is given by 

7r(Ntotlnobs) = E ir(riotInobs, tn)7r(minob5), 
Hi 

where 7r(Ntotl gobs, m) denotes the marginal posterior distribution for Ntot under model m. 
Model averaging can also be performed within a classical framework (Buckland etal., 1997; 

Hook and Regal, 1997). However, identifying the set of models with reasonable support to 
include can be difficult, particularly for large model spaces. In addition, irrespectively of using 
a Bayesian or classical approach, care should be taken when providing model-averaged point 
estimates. In particular, in the case where competing models with large support provide very 
different estimates of the parameter(s) of interest, the corresponding model-averaged point 
estimate could lie in an area of little or no support. In a Bayesian framework such circumstances 
can usually be identified in terms of a multimodal marginal posterior density of the parameter(s), 
and this may be of interest in itself (see for example King, Morgan, Gimenen and Brooks (2009)). 
For further general discussion of model averaging, see for example chapter 6.5 of King, Morgan, 
Gimenen and Brooks (2009) and Burnham an.d Anderson (2002). 

3.2. Prior expert information 
External information is available that can be combined with expert prior beliefs to provide an 
informative prior in relation to the total number of IDUs, Ntot. In particular, we have indepen-
dent data relating to the number of DRDs for each region between 2004 and 2007 and prior 
beliefs relating to the annual DRD rate for injectors. The totality of DR.Ds includes those with 
any combination of heroin or morphine, methadone, cocaine, benzodiazapines and alcohol in 
their systems at the time of death.. We make the following decisions regarding the classification 
of DRDs as pertaining to current injectors to obtain an estimate of the proportion of injecting 
DRDs in each region. We assume that current IDUs are only those with any heroin or mor-
phine in their system (irrespectively of any other drugs identified). Note that we do not include 
methadone-only deaths (i.e. no heroin or morphine identified) in our definition of injecting 
DRDs since methadone-only DRDs may occur preferentially to those enrolled in opiate sub-
stitution therapy or to those for whom methadone was not prescribed. Individuals taking a 
mixture of methadone and heroin or morphine are already identified within the HRDs. The 
corresponding mean annual number of HRDs from 2004 to 2007 recorded by year of death (see 
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Table 2. Mean number of HRDs per year of death for each region by using data from the 
four calendar years 2004-2007 

Regioaa Total Males, 
15-34 years 

Females, 
15--34 years 

.[ales. 
35 4 years 

1- males, 
$5-64 years 

East of England 62.75 21.0 3.75 33.0 5.0 
East Midlands 64.75 28.5 4.75 27.0 4.5 
London 59.5 22.5 4.25 27.25 5.5 
North East 39.25 24.5 3.5 9.5 1.75 
North West 124.25 49.0 6.25 56.5 12.5 
South East 124.0 52.5 10.0 49.75 11.75 
South West 111.75 47.75 10.0 46.75 7.25 
West Midlands 79.25 34.25 5.25 33.5 6.25 
Yorkshire and Humber 107.25 61.75 7.0 33.25 5.25 

England 772.75 341.75 54.75 316.5 59.75 

www. . rss . org . uk/policy `Registration of deaths in England and Wales') for each region is 
provided in Table 2. 

To form the prior on the total IDU population size, we couple this information with the prior 
beliefs relating to the annual injecting DRD rate. We specify a symmetric 90% interval for IDUs' 
annual injecting DRD rate of (0.3%, 1.2%) with a median of 0.6% (this prior was informed by 
the analysis of Merrall 

et al. 

(2012) of DRD rate for drug treatment clients in Scotland. from 
1.996-2006 and by Scotland's injectors as analysed by King, Bird, Hay an.d Hutchinson (2009)). 
We note that injecting DRD rates are generally higher for older individuals and for males 
(Merrall 

et al., 

2012; Cornish 
et al., 2010), and it is possible to consider different prior intervals 

for different cross-classified groups (using an alternative model reparameterization, as discussed 
in Appendix B). However, to avoid increased variability of annual estimates, and explicitly to 
model the gender x age group interaction, we specify a relatively wide interval for the overall 
injecting DRD rate. 

3.3. Prior distributions 
We initially specify priors on the log-linear parameters where we do not have any prior infor-
mation, before we consider the parameter on which there is some expert prior belief: the IDU 
population size. We complete the prior specification with the prior model probabilities in terms 
of the interactions that we present in each model. For each individual region and each possi-
ble log-linear model we follow King and Brooks (2001a) and specify a hierarchical N(O, a21) 

distribution on the set of log-linear parameters in the model and use the non-informative prior 
a2 F-1(0.001, 0.001). This implies that, given that a two-way interaction is present in the 
model, there is an equal prior probability that the interaction is positive or negative. See King 

et al!. (2005) for an alternative prior specification if there is expert prior belief for a positive or 
negative interaction. 

To represent the expert prior information on the total population size Ntot, we specify a 
log-normal prior independently over models, because the prior information is specified in mul-
tiplicative form, which results in a skewed distribution. For example, suppose that for a given 
region. the mean annual. number of HRDs is X. We specify a prior on the logarithm of the total 
number of IDUs for the region to be normally distributed with mean log(X/0.6%) (so that 
the prior median is accurately reflected) and variance 0.1776 (to reflect the specified prior 90% 
interval). 
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Finally, we specify a prior over the model space. We define the set of possible models to be 
those models with a maximum of second-order interaction terms (essentially specifying a prior 
probability of 0 for all higher order interaction terms). This allows interactions between two 
sources, two covariates and one covariate and one source. For example, this permits a two-
way interaction between DIP community assessment and drug treatment data, so that being 
observed by DIP community assessment makes it more or less likely to be observed within 
the drug treatment data. Clearly, the aim of DIP community assessment work is to increase 
the number of individuals receiving treatment, so a positive interaction is desired. However, as 
stated above, we specify an equal prior probability on each two-way interaction being positive 
or negative, given that the interaction is present in the model. Similarly, a two-way interaction 
between gender and drug treatment data would be interpreted as male IDUs being more or less 
likely (than females) to be receiving treatment for drug addiction. 

Considering two-way interactions only significantly reduces the number of possible hierarchi-
cal log-linear models and aims to focus on the most important direct interactions between the 
different sources and/or covariates and to retain epidemiologically interpretable models without 
data dredging. Without any strong prior information relating to the two-way interactions that 
may be present we specify a prior probability of 0.5 that each interaction is present in the model, 
but we note that the interactions that are identified within the analysis are of direct interest 
particularly i.n terms of any relationships between the different criminal justice sources and/or 
drug treatment agencies. The specified prior induces an equal prior probability for each possible 
model in the set of plausible models. 

To assess the sensitivity of the posterior estimates of the number of IDUs on the above prior 
specification, we conduct a prior sensitivity analysis (see Section 4.4) and compare the results 
that are obtained. Firstly, we consider the sensitivity of the posterior with respect to the priors 
specified on the model parameters, using an uninformative prior specification in the form of 
uniform priors on the total population count and standard deviation of the log-linear variance 
term. Secondly, we remove the restriction of considering only two-way interaction terms and 
allow all possible hierarchical log-linear models, including for example three-way interactions, 
with each model equally likely (and note that this increases the prior probability of two-way 
interactions being present in the model). 

3.4. (Reversible jump) Markov chain Monte Carlo algorithm 
The posterior distribution is defined over both parameter and model space, so we implement a 
reversible jump Markov chain Monte Carlo (MCMC) algorithm (Green, 1995) since the pos-
terior distribution is multi-dimensional (as the number of parameters differs between models). 
The advantage of the reversible jump algorithm is that the Markov chain simultaneously ex-
plores the parameter and model space. This means that we do not need to fit each possible model 
individually. Irrespectively of the number of possible models, only a single chain is necessary 
(though. typically, as the model space increases, so does the length of the Markov chain that is 
needed). Within the algorithm, we use a two-step procedure. 

Step 1: conditional on the model, we cycle through each individual parameter in turn and 
propose to update the parameter by using a Gibbs or Metropolis—Hastings step (note that 
we also simulate population counts for each gender x age group cross-classification from the 
posterior conditional distribution). 
Step 2: update the model by using a reversible jump step by adding or removing a log-linear 
interaction term from the model. 

We consider each step in turn. 
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3.4.1. Step 1: updating the parameters 
We update 0.2 by using a Gibbs step, since the posterior conditional. distribution is of standard 
form (i.e. inverse gamma) and a single-update random-walk Metropolis—Hastings algorithm is 
used for all the other log-linear parameters and total population size. See Brooks (1998) for a 
general description of these algorithms and King and Brooks (2001a) for the specific application 
to the log-linear parameters. We note that, not only is the total population size of interest, but 
also the population sizes for each gender x age group cross-classification. These can be easily 
obtained within the MCMC algorithm by simply simulating these population sizes from their 
posterior conditional predictive distribution at each iteration of the Markov chain. In particular, 
we have that 

nunobs I Ntot, 
e, nobs multinomial(Ntot — n, qunobs), 

where qunobs = {q(9. a):unobs :g E {M, F}, a E {i.5--34, 34-65} } and 

q(9, a):unobs = P(9, a):0/E P(9, a):O 
g, a 

In other words q(g,a):unobs denotes the probability that an individual is of gender g and in age 
group a given that they are not observed within the study. 

3.4.2. Step 2: updating the model 
To update the log-linear interaction terms within the model we use a reversible jump step 
(Green, 1995). For a single reversible jump step, we propose to add or remove a single two-way 
interaction term (since we consider only models with two-way interactions). We choose each 
log-linear interaction with equal probability. If the parameter is in the model., we propose to 
remove the parameter; if it is not in the model, we propose to add the parameter. Suppose 
that we propose to add. a given two-way interaction parameter. We propose a candidate value 
from a proposal distribution q, which in this case is a normal distribution. The corresponding 
proposal mean is obtained by using the posterior mean of the given parameter from a pilot 
MCMC run in the model containing all two-way interactions. The proposal variance is chosen 
via pilot tuning. The corresponding acceptance probability reduces to the ratio of the likelihood 
function of the proposed and current parameter values respectively, multiplied by the ratio of 
the prior density function to the proposal density function for the newly proposed log-linear 
parameter (the Jacobian is equal to 1). See King and Brooks (2001a) for further details by using 
an analogous approach and Forster et al. (2012) and Papathomas et al. (2011) for alternative 
reversible jump implementations. 

For each region, the reversible jump MCMC algorithm is run for a total of 10 million iterations 
with the first 10% discarded as burn-in. For memory storage purposes the observations are 
thinned every five iterations. Three independent replications using overdispersed starting points 
obtained similar results (all with the same interpretation) so we conclude that the algorithm has 
sufficiently converged. Additionally, using the Brooks—Gelman—Rubin statistic on the missing 
cell entries provided. no evidence for lack of convergence. The mean acceptance probabilities 
for adding or removing the log-linear terms lay around 1.5% for each of the regions (the mean 
values ranged from 0.7% to 2.5%). The mean acceptance values are not high, but this is partially 
explained by many of the log-linear terms having either a very high probability of being present 
or not being present (Table 3), so removing or adding such terms respectively was largely rejected 
in the reversible jump chain. In other words, taking into account the number of possible models, 
there was relatively little uncertainty in the parameters that were in the model. 
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Fig. 1. Posterior distribution for the total population size for each region ( ) and the corresponding 
prior distribution (.............): (a) East of England; (b) East Midlands; (c) London; (d) North East; (e) North West; 
(f) South East; (g) South West; (h) West Midlands; (i) Yorkshire and Humber 

4. Results 

4.1. Estimating the number of injecting drug users 
Fig. 1 provides plots of the prior and (model-averaged) marginal posterior distributions for 
the number of IDUs in each region. These model-averaged density estimates appear to be uni-
modal, so models with reasonable posterior support appear to provide similar estimates of 
population size. For regions the East Midlands, London, the North East, North West, West 
Midlands and Yorkshire and Humber, the priors generally appear to underestimate the num-
ber of IDUs in the regions. The most significant difference between the prior and posterior 
distributions is clearly for London with virtually no overlap between the prior and poste-
rior distributions. This would potentially suggest, for these regions, and London particularly, 
that 
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Table 3. Posterior mean and 95% symmetric credible interval (in parentheses) for the total number of IDUs 
in each region and each cross-classification of gender and age and aggregated to the England level by using 
a Monte Carlo approach (rounded to the nearest 10) 

Rc°giun Tidal 

Males, 
15-34 years 

Results for the following groups: 

Females, Males, 
15-34 years 35-64 years 

Ferrules; 
35-64 years 

East of England 11000 5120 1680 3420 780 
(9450,12680) (4340, 5950) (1370,2000) (2790,4050) (610,950) 

East Midlands 15490 9030 2280 3460 720 
(13540, 17540) (7860, 10230) (1860, 2760) (2950, 4000) (560, 900) 

London 39390 14430 4630 16770 3570 
(27870, 50060) (10050, 18730) (3090, 6200) (11770, 21520) (2430, 4750) 

North East 11650 7350 2220 1.680 390 
(9940,13540) (6250,8570) (1810,2650) (1290,2050) (280,490) 

North West 34770 13250 5560 12580 3370 
(30920, 38780) (11810, 14740) (4890, 6260) (11120, 14090) (2930, 3820) 

South East 15930 7230 2760 4660 1290 
(12550, 23720) (5690,10670) (2120,4120) (3570,7020) (960, .1960) 

South West 19320 8680 3550 5470 1620 
(16980,22040) (7610,9860) (2970,4140) (4740,6310) (1330,1910) 

West Midlands 16930 9480 2890 3580 990 
(151.00, 18850) (8460,10540) (2510,3270) (3130,4040) (820, 1150) 

Yorkshire and Humber 31360 17040 6530 6190 1590 
(27710, 35110) (15100, 19060) (5710, 7370) (5400, 7000) (1360, 1830) 

England 195840 91610 32100 57810 14320 
(181700, 210480) (85610, 97950) (29760, 34550) (52260, 63420) (12910, 15800) 

(a) the number of injecting DRDs is an underestimate and./or 
(b) the injecting DRD rate is lower than the prior expert beliefs. 

We return to this issue below when discussing the posterior injecting DRD rates. 
Table 3 provides the posterior estimates for the total population size and each combination 

of gender x age group cross-classifications for each of the regions, in addition to the corres-
ponding population sizes for England (i.e. posterior estimates summed over each region). The 
posterior mean of the total current injector population for England can be easily calculated as 
the sum of the posterior means of the estimates for each region. However, the corresponding 
credible intervals at the England level cannot be obtained directly from the credible intervals for 
each individual region. For example, summing the 2.5% quantiles (which are used for the lower 
bound of the 95% credible interval) over all regions will not give th.e corresponding 2.5% quantile 
for England (the value obtained would be for a much lower quantile for the total population 
size for England). We can obtain the 95% credible interval at the national level by considering 
a Monte Carlo approach. Recall that the regional data sets are analysed independently of each 
other, so the posterior (marginal) distributions of the population sizes are independent across 
regions. To obtain a sample observation from the posterior distribution of the population size 
for England, we simply take a sample observation of the number of IDUs from each region 
and sum these values. By repeatedly sampling from the set of regional posterior distributions 
for IDU population sizes, we can obtain, for England, a Monte Carlo estimate for the credible 
intervals of interest. 

From Table 3 we see that three regions (London, the North West and Yorkshire and Humber) 
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appear to have significantly higher absolute numbers of IDUs. In addition, consistently, there is 
a larger estimated number of males than females in each region. for each age group considered. 
Overall, the posterior mean ratio of males to females (aggregated. to the England level) is 3.22 
with corresponding 95% symmetric credible interval. (3.02, 3.38). The posterior mean male-to-
female ratio over the regions ranges from 2.74 (South West) to 4.19 (East Midlands). Capture 
propensities also appear to differ between regions, in terms of the proportion of individuals 
who are observed by at least one source. Injectors in London have the least propensity of being 
observed (posterior mean 0.21 with 95% credible interval (0.16, 0.28)), IDUs in the South 
West the highest propensity (posterior mean 0.46 with 95% credible interval (0.40, 0.51)). The 
posterior means for all other regions lay within the range (0.31-0.40). 

For comparison with the estimate of the number of IDU s in England in Table 3 by aggregating 
the posterior regional estimates, we perform a further analysis where we aggregate the raw data 
across the Government Office regions and analyse the resulting contingency table by using the 
same Bayesian approach. To analyse these data, we use the same prior beliefs as before, which 
provide a prior median for the total population size of 128792 with 90% interval (64396, 
257583). This lower bound is actually less than the number of observed IDUs (see Table 1). 
The corresponding posterior mean (rounded to the nearest 10) of the total population size is 
209820 with 95% symmetric credible interval (197930, 222200). Thus, the regionally derived 
England estimate (i.e. obtained by aggregating the posterior regional estimates) is generally lower 
than that obtained when analysing the data without heed to the regional component (although 
there is some overlap between the credible intervals). If we consider the corresponding estimates 
for the cross-classifications when aggregating at the data level we obtain posterior means and 
95% symmetric credible intervals (rounded to the nearest 10) for males aged 15-34 years of 
96440 (90960, 102100), for females aged 15--34 years of 36940 (34480, 39430), for males aged 
35-64 years of 59830 (56190, 63620) and for females aged 35-64 years of 16610 (15380, 
17810). The posterior estimates for males are fairly consistent with the regionally derived 
England estimates in Table 3 (with significant overlap between the credible intervals), but esti-
mates were higher for females. In other words, allowing for heterogeneity at the regional level 
results in lower estimates for female IDUs. 

A previous estimate for England (using the same capture—recapture data but analysed at the 
DAT level) obtained by Hay et al. (2009) is significantly lower, with a point estimate of 129 980 
and 95% confidence interval (125790, 137030), rounded to the nearest 10. Estimates aggregated 
at the Government Office regions are also generally smaller (with the exception of the South 
East). We return to possible reasons for this apparent discrepancy in Section 4.3 when we dis-
cuss in detail the interactions that were identified for each of the Government Office regions. 
Alternatively, using a Bayesian evidence synthesis approach to estimating the prevalence of 
hepatitis C virus infections, de Angelis et al. (2009) provided a posterior median for the current 
IDU population in 2003 for England and Wales of 217000 with 95% credible interval (157000, 
309000), which is broadly consistent with our estimate when taking their inclusion of Wales into 
account. The same analysis also provided estimates for London and the North West, with pos-
terior means of 38000 and 23000 with 95% credible intervals (30000, 48000) and (14000, 38000) 
respectively, which again appear to be largely consistent with the estimates that were obtained 
by using only the capture—recapture data here if only because of wide uncertainty. For example, 
the estimate by de Angelis et al. (2009) for the North West has a relatively much wider credible 
interval than does ours. Finally, we note that Hickman et al. (2004) provided a capture—recapture 
estimate for London of 34400, for the slightly earlier year of 2001 for those aged 15-44 years. 

Table 4 relates the centrally estimated number of current injectors to regions' mid-2005 pop-
ulation aged 15-64 years, since the regions differ in population size. England has an estimated 
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Table 4. Current injector totals set in context by regions' mid-2005 population aged 15-64 years and 
estimated ratio of young to old (i.e. 15-34 to 35-64 years) for each gender in each region

Region Mid-2005 Posterior Posterior Posterior Posterior 
population mean of current mean of current mean of male mean offemale 

(x103) injectors injectors to injector ratio injector ratio 
aged 15-64 (Per 1000) nearest 50 by age group by age group 

years population aged (15-34/35-64 (15-34/35-64 
15---64 years years) years) 

East of England 3604.0 3.1 11000 1.50 2.15 
(2.6, 3.5) (9450, 12700) (1.32, 1.76) (1.83, 2.52) 

East Midlands 2839.0 5.5 15500 2.61 3.17 
(4.8, 6.2) (13550, 17550) (2.41, 2.82) (2.72, 3.58) 

London 5269.0 7.5 39400 0.86 1.30 
(5.3, 9.5) (27850, 50050) (0.76, 0.97) (1.13, 1.48) 

North East 1686.1 6.9 11650 4.40 5.85 
(5.9, 8.0) (9950, 13550) (3.80, 5.47) (4.46, 7.50) 

North West 4497.0 7.7 34750 1.05 1.65 
(6.9, 8.6) (30900, 38800) (1.01, 1.10) (1.54, 1.77) 

South East 5338.0 3.0 15950 1.56 2.15 
(2.4, 4.4) (12550.23700) (1.45, 1.66) (1.92, 2.37) 

South West 3252.7 5.9 19.00 1.59 2.20 
(5.2, 6.8) (17000, 22050) (1.51, 1.67) (2.03, 2.38) 

West Midlands 3499.9 4.8 16950 2.65 2.92 
(4.3, 5.4) (15100, 18850) (2.46, 2.83) (2.58, 3.32) 

Yorkshire and Humber 3325.7 9.4 31350 2.75 4.11 
(8.3, 10.6) (27700, 35100) (2.61, 2.90) (3.76, 4.48) 

England 33311.4 5.9 195850 1.59 2.24 
(5.5, 6.3) (18 1700, 210500) (1.51, 1.67) (2.12, 2.36) 

t95% credible intervals are given in parentheses. 

5.9 current injectors per 1.000 of the population aged 15--64 years (with 95% symmetric credible 
interval 5.5-6.3). The estimated injector prevalence is low (posterior mean around 3) in the East 
of England and the South East, high (posterior mean around. 7.5) in London, the North East 
and the North West and very high (posterior mean around 9) for Yorkshire and Humber. How-
ever, it is an encouraging sign for London and the North West (with high prevalence rates) that 
their injector age group ratios (15---34 to 35---64 years) are relatively low compared with England 
as a whole (posterior mean 1.59 for males and 2.24 for females; and see Millar et al. (2006) for 
further detailed discussion of problem drug use in the North West up to 2001). Regions with 
high injector ratios by age group may have experienced later diffusion with younger injectors 
predominating. These regions include the East and West Midlands, North East and Yorkshire 
and Humber, the last of which is also beset by the largest overall injector prevalence per 1000 
of the population aged 15-64 years. 

4.2. Injecting drug-related death rates 
We obtain a sample from the posterior distribution for the injecting DR.D rates by taking the 
ratio of the mean annual number of HRDs (as provided in Table 2) with the total number of 
IDUs for each gender x age group cross-classification at each iteration of the Markov chain. The 
corresponding posterior mean and symmetric 95% credible interval of the injecting DRD rates 
are provided. in Table 5. Recall that the prior 90% interval on the injecting DRD rates wa.s (0.3%, 
1..2%). We comment first at the England level and observe that the posterior injecting DRD rate 
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Table 5. Posterior mean and 95% symmetric credible interval (in parentheses) for the injecting DRD rate, 
in each region and each cross-classification of gender and age 

Region Total (%) Results (%) for the following groups.• 

Males, 15-34 Females, 15-34 Males, 35-64 Females, 35-664 
years years years years 

East of England 0.57 0.41. 0.23 0.97 0.65 
(0.49, 0.66) (0.35, 0.48) (0.18, 0.27) (0.80, 1.16) (0.51, 0.79) 

East Midlands 0.42 0.32 0.21 0.79 0.63 
(0.37, 0.47) (0.28, 0.36) (0.17, 0.25) (0.67, 0.90) (0.48, 0.77) 

London 0.15 0.16 0.09 0.17 0.17 
(0.11, 0.20) (0.11, 0.21) (0.06, 0.13) (0.12, 0.22) (0.11, 0.21) 

North East 0.34 0.34 0.16 0.57 0.46 
(0.29, 0.39) (0.28, 0.39) (0.13, 0.19) (0.45, 0.72) (0.34, 0.60) 

North West 0.36 0.37 0.11 0.45 0.37 
(0.32, 0.40) (0.33, 0.41) (0.10, 0.13) (0.40, 0.50) (0.32, 0.42) 

South East 0.81 0.75 0.38 1.11 0.95 
(0.51, 0.97) (0.48, 0.90) (0.24, 0.46) (0.69, 1.35) (0.58, 1.18) 

South West 0.58 0.55 0.28 0.86 0.45 
(0.50, 0.65) (0.48, 0.62) (0.24, 0.33) (0.73, 0.97) (0.37, 0.53) 

West Midlands 0.47 0.36 0.18 0.94 0.64 
(0.42, 0.52) (0.32, 0.40) (0.16, 0.21) (0.82, 1.06) (0.53, 0.75) 

Yorkshire and Humber 0.34 0.36 0.11 0.54 0.34 
(0.30, 0.38) (0.32, 0.41) (0.09, 0.12) (0.47, 0.61) (0.28, 0.38) 

England 0.40 0.37 0.17 0.55 0.42 
(0.37, 0.42) (0.35, 0.40) (0.16, 0.18) (0.50, 0.60) (0.38, 0.46) 

is at the lower end of the prior distribution informed by the Scottish analyses. We note that 
the overall posterior estimate for the injecting DRD rate is lower than that presented by Bloor 

et al. (2008) who investigated the `Scottish effect' of higher DRD rates in Scotland compared 
with England and offered an estimate for Scotland of 0.8% (with 95% uncertainty interval 0.5-
1.2% by using data from 2001-2005); our estimated injecting DRD rates for England indeed 
fall below the lower end of their uncertainty interval. In addition, the injecting DRD rate in 
England appears to be significantly lower for younger than older injectors: for males, a posterior 
mean of 0.37% for the younger age group compared with 0.55% for the older age group with 
non-overlapping credible intervals and likewise for females, with posterior means of 0.17-0.42% 
for the younger and older age groups. We note that the previous Scottish analysis of King, Bird, 
Hay and Hutchinson (2009), using data from 2003--2005, estimated significantly higher injecting 
DRD rates for the cross-classified groups in Scotland but, unlike this analysis, identified a lower 
female injecting DRD rate only for young injectors with no gender differential for older injectors. 
For England, more definitively than for Scotland, we observe that older females' injecting DRD 
rate is also significantly lower than for older males (posterior mean 0.42% versus 0.55% with 
non-overlapping credible intervals). See King, Bird, Hay and Hutchinson (2009) for further 
details and results relating to the analyses of the Scottish data. Finally, we note that England's 
overall injecting DRD rate, as defined by us, appears to be similar to the DRD rate of 0.36% 
that was reported by Merrall 

et al. 

(2012) for all Scotland's drug treatment clients in the five 
years to the end of March 2006, although this estimate for Scotland relates to problem drug 
users who had sought treatment and who included non-injectors. 
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We now consider the results at the regional level. Comparing the results in Table 5 with the 
90% prior interval for injecting DRD rate, it is clear that the London result appears to be the 
most at odds with these prior beliefs, with the upper 97.5% posterior quantiles of injectors' DRD 
rates lower than 0.3% (the lower 5% prior quantile) for each gender x age group. Comparing the 
prior and posterior distributions of numbers of IDUs in Fig. 1 we see very little overlap between 
these distributions. The significantly higher posterior estimate of the population size (compared 
with the prior specification) consequently produces the lower estimates of the injecting DRD 
rates. 

For all regions, the lowest injecting DRD rates are for females in the younger age group 
(15-34 years), with many regions having an injecting DRD rate in the lower 5% quantile of the 
prior interval. Overall, the females injecting DRD rates are generally lower than for the males. 
The older age group (35-64 years) has a higher injecting DRD rate for both males and females, 
relative to the younger age group (15-34 years). This appears to be broadly consistent with other 
studies showing increased mortality rates for older individuals and males (Cornish et al., 2010; 
Merrall et al., 2012). 

The difference in the injecting DRD rates across the different regions could be a result of 

(a) a genuine artefact across the regions, 
(b) misestimation of the number of IDUs (i.e. the denominator), 
(c) misclassification of the number of injecting DRDs (i.e. the numerator) or 
(d) misestimation of the number of IDUs and misclassification of the number of injecting 

DRDs. 

It is not possible to rule out either misestimation or misclassification. As discussed in Section 
1 there may be some heterogeneity with respect to the misclassification of injecting DRDs, e.g. 
in the recording of the presence or absence of heroin or morphine and/or methadone, based 
on the presence of toxicology or based on whether it was implicated in the death. In addition 
(except for London as we discuss in Section 4.4) the regional estimates obtained are insensitive 
to the priors that were specified on the parameters and models, which suggests that significant 
misestimation is unlikely. Thus, assuming that there are some genuine regional differences in the 
risk of mortality for IDUs, three regions in Table 5 (the East of England, South East and South 
West) had particularly high injecting DRD rates, the first two of which (the East of England and 
South East) can be seen from Table 4 as regions with the lowest prevalence of current injectors 
per 1000 of the population aged 15-64 years. 

4.3. Marginal log-linear probabilities 
The corresponding marginal posterior probability that each covariate is present in the model 
for each separate region i.s provided in Table 6. Note that we identify `positive' evidence for a 
Bayes factor of 3 or greater, for the presence of an interaction, corresponding to a posterior 
model probability 0.75 or greater, and `strong' evidence for a Bayes factor of 20 or greater, 
or posterior probabilities 0.95 or greater (Kass and Raftery, 1995). There are several points 
of interest. Multiple interactions are clearly important across all (or the majority of) regions, 
namely S1 x S2 (probati.on x DIP prison data), S1 x S3 (probation x drug treatment data), S2 x 
G (DIP prison data x gender) and S4 x A (DIP community assessment data x age). For all these 
interactions, the sign of the interaction is consistent across regions, in particular, a decreased 
probability of being observed by DIP prison data for females, a decreased probability of being 
observed. by DIP community assessment data for the older age group and positive interactions 
for S1 x S2 and S1 x S3, indicating, as we would perhaps expect, an increased probability of being 
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Table 6. Marginal posterior probability for each two-way interaction being present in the model for each 
region 

Interaction Results for the following regions.• 

East of East London North North South South West Yorkshire and 
England Midlands East West East West Midlands Humber 

Source x source 
S; x S2 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
S! x S3 0.998 1.000 0.951 1.000 1.000 1.000 0.988 1.000 1.000 
S2 x S3 0.068 0.049 0.994 0.160 0.055 0.281 0.076 0.086 0.981 
S, x S4 1.000 1.000 1.000 1.000 1.000 0.486 1.000 1.000 1.000 
,S2 x S4 1.000 0.999 1.000 1.000 1.000 0.095 0.690 1.000 1.000 
S3 x S4 0.060 1.000 1.000 1.000 1.000 0.330 0.988 1.000 1.000 

Source x covariate 
S1 x G 0.050 0.168 0.226 0.061 0.997 0.115 0.997 0.995 0.843 
S2 x G 1.000 1.000 0.833 0.985 1.000 0.998 1.000 1.000 1.000 
S3 x G 0.971 0.959 0.953 0.1.71 0.033 0.039 0.117 0.060 0.031 
S4 x G 0.119 0.470 0.379 0.957 1.000 0.916 1.000 0.955 1.000 
S1 x A 0.657 1.000 0.109 0.816 1.000 0.981 1.000 0.967 0.986 
S2 x A 0.929 1.000 1.000 0.537 1.000 1.000 1.000 1.000 1.000 
S3 x A 0.117 0.054 0.999 0.262 0.026 0.045 0.062 0.061 0.055 
S4 x A 0.993 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000 

Covariate x covariate 
G x A 0.997 0.787 1.000 0.867 1.000 0.999 1.000 0.489 1.000 

' -Recall that Sl = probation, S2 - DIP prison assessment data, 53 - drug treatment data, S4 - DIP community 
assessment data, G = gender and A = age. 

observed within DIP prison data and. drug treatment data if an individual is observed within 
probation (individuals released from prison are often placed on probation and drug treatment 
can be a requirement of probation). 

Similarly there is a set of interactions, each of which is identified in a majority of regions. These 
are Si x S4 (probation x DIP community assessment data for all regions except the South East), 
S2 x S4 (DIP prison data x DIP community assessment data for all regions except the South 
East and South West, though there is posterior uncertainty in the South West), 53 x S4 (drug 
treatment data x DIP community assessment data for all regions except the East of England 
and the South East), S1 x A (probation x age for all regions except the East of England and 
London), 52 x A (DIP prison data x age for all regions except the North East), G x A (gender 
x age identified in all regions except the West Midlands). Once more, for the regions where 
the interaction is identified the sign of the interaction is consistent. We note that the positive 
interaction S3 x S4 (treatment data x DIP community assessment data), as identified in all 
regions except the East of England and the South East, is a highly desired cross-linkage via 
increased uptake of drug treatment for individuals in DIP community assessment programmes. 

There are some further discrepancies over the different regions regarding the presence of 
particular interactions. These include the following. 

(a) London and Yorkshire and Humber are the only regions to identify the interaction S2 x 53 

(DIP prison assessment data x drug treatment data), despite large investment in the DIP 
initiative to lead to increased drug treatment. As we would expect, when this interaction 
is identified, it is positive. The lack of identification of this interaction is disappointing for 
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other areas, as there does not appear to be the prison—d.rug treatment centre links made 
that are intended. 

(b) London is the only region that identifies the interaction S3 x A, with older individuals 
more likely to be observed by the treatment data. However, for this region, the interaction 
Si x A is not identified whereby, in other regions, fewer younger individuals are identified 
via source Si (probation). 

(c) The East of England, East Midlands and London identify an interaction S3 x G (drug 
treatment data x gender) but no interaction between S4 x G (DIP community assess-
ment data x gender). For these regions, there is an increased probability for females to 
be observed within drug treatment agencies but no support for the interaction S4 x G, 
identified by all other regions, wherein there is a decreased probability of females being 
observed in DIP community assessment programmes. 

(d) The North West, South West, West Midlands and Yorkshire and Humber are the only 
regions to provide positive support for the interaction Sl x G (probation x gender) with 
a decreased probability of being observed within probation for females. 

Finally, we return to the comparison of results that were obtained within this analysis and 
those of Hay et at (2009), who considered the same data but analysed at the DAT area level. 
Within their analyses, they did not include the covariate information and considered only the set 
of log-linear models with a maximum of two source x source interactions (a total of 22 models). 
Typically, the model with lowest Akaike information criterion value was chosen (although see 
Hay et al. (2009) for more specific details) and the corresponding estimate for the total population 
was as given by the chosen log-linear model. For all Government Office regions, except the South 
East, the number of source x source interactions that were identified in our models typically lies 
between 4 and 6. Further, all of the source x source interactions that are identified with large 
posterior support for each region have a posterior mean that is positive. Thus, not including such 
interactions (as for eight of the nine regions) results in the decreased estimate of population size 
obtained by the previous analysis of Hay et at (2009), rather than differences being due to the 
use of the lower DAT area level data or ignoring the gender and age group covariate information. 
Conversely, for the South East (where only two source x source interactions are identified with 
positive support), Hay et at (2009) provided an overall estimate and 95% confidence interval of 
13 270 (10290, 16 380), which is reasonably consistent with the estimate that is provided in Table 
2, with both point estimates contained in the alternative analysis's uncertainty interval but this 
is n.ot so for any other region. 

4.4. Sensitivity analyses 
We present two sensitivity analyses. The first considers the prior specification on the parameters, 
whereas the second considers the prior on the set of possible models. We initially consider the 
prior specification on the parameters, and the set of models allowing only two-way interaction 
terms with each possible model equally likely, as in the previous analysis. We specify a uniform 
prior on the total population size and set the standard deviation of the log-linear terms to be 
uniform, with a suitable large upper limit (Gelman, 2006). In particular, we set Cr U[0,100]. 
The reversible jump MCMC algorithm is run for each. of the different regional contingency 
tables, and the aggregated England data set. The posterior distributions that were obtained 
for the majority of analyses (all except London) are very similar for those obtained for the 
previous informative priors (for example, estimated posterior means for the total number of 
IDUs within 4% of each other and the same interactions are identified as before), suggesting 
that the posterior distribution in these cases are data driven. For London, larger estimates are 
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obtained (approximately 19% higher), which suggests that the informative prior specification 
had some influence on the posterior estimates in this region. 

Secondly, we remove the restriction on the models considered within the analysis and. allow 
higher order interactions. We specify an equal prior probability for each possible hierarchical 
log-linear model, retaining the previous informative priors, and run a reversible jump MCMC 
algorithm for each of the Government Office regions and for the aggregated England data.. 
We initially discuss the estimates that were obtained at the England level for both the results 
aggregated by using the regional level data and the results obtained by aggregating at the data 
level. 

The estimated posterior mean of the total number of IDUs (to the nearest '1000) obtained 
by aggregating the estimates obtained from the analyses of the regional data is 191000 with 
95% posterior credible interval (176000, 210000), which is slightly lower than the previously 
obtained estimate by using only two-way interactions, but with large overlap between the cred-
ible intervals. Analysis of the data aggregated to the England level before model fitting obtains 
a posterior mean total estimate (to the nearest 1000) of 211000 with 95% symmetric credible 
interval (198000, 224000). This is slightly higher than the estimate that was obtained when con-
sidering the regional data but with overlapping credible intervals. We note that there is positive 
posterior support for only one three-way interaction, Si x S2 x G (probation x DIP prison data 
x gender), with females having an increased probability of being observed by both sources. 

We now consider the results that were obtained at the regional level. For all the regional 
level data sets, except for London, the estimated posterior means for the cross-classified (and 
total) number of IDUs all lie within 1.0% of the results that were obtained by using only two-
way interaction terms (with the majority lying within 5%), although there are some differences 
with regard to interactions observed to be present. Unsurprisingly, the 95% posterior credible 
intervals are generally slightly wider, representing the additional model uncertainty. For Lon-
don, the estimated total number of IDUs is significantly lower, with a posterior mean of 26430 
with 95% symmetric credible interval (17490, 42830), which still has significant overlap with 
the previous estimate. The decrease in estimate (approximately 30%) is consistent across the 
gender x age cross-classifications and directly leads to the reduced overall estimate for Eng-
land. The reason for this lower estimate in London appears to be related to the identification 
of a three-way interaction term between sources S2 x S3 x S4 (DIP prison x drug treatment 
x DIP community assessment data), but note that this interaction is not identified within any 
other region. In particular, if an individual is identified by both forms of DIP data (or not ob-
served by either of these sources), they have an increased probability of being observed in drug 
treatment. 

Allowing this interaction to be present removes the presence of the two-way interaction be-
tween probation and drug treatment data within London (which is clearly identified as being 
present in all other regions). Alternatively, for the North West, South West, West Midlands 
and Yorkshire and Humber regions, the three-way interaction between criminal justice sources 
S1 x S2 x S4 (probation x DIP prison x DIP community assessment data) was identified, with 
an increased probability of being observed by all three sources. Further three-way interactions 
that were identified were Si x S4 x A (DIP prison data x DIP community data x age) for the 
South East (for the older age group a reduced probability of being observed by both sources), 
S1 x S4 x G (probation x DIP community data x gender) for the South West, S2 x S4 x G (DIP 
prison data x DIP community data x gender) for the West Midlands and Si x S2 x G (proba-
tion x DIP prison data x gender) for Yorkshire and Humber. For all interactions identified., 
females had an increased probability of being observed by both of the given sources. However, 
identifying additional higher order interactions for the regions (except London) did not appear 

RLIT0001637_0019 



20 H. King, S. M. Bird, A. M. Overstall, G. Hay and S. J. Hutchinson 

Table 7. Counts for the East of England 

Si S: S3 54 Moles, Females, Males, Females, 
young young old olrl 

1 0 0 0 184 58 89 29 
0 1 0 0 85 6 36 
1 1 0 0 9 * * 0 
0 0 1 0 912 422 673 209 
1 0 1 0 98 31 46 13 
0 1 1 0 19 5 6 
1 1 1 0 5 * *
0 0 0 1 166 43 67 8 
1 0 0 1 24 7 13 
0 1 0 1 6 * * 
1 1 0 1 * * * 0 
0 0 1 1 41 21 16 
1 0 1 1 10 6 6 
0 1 1 1 9 0 0 0 
1 1 1 1 * 0 0

Total 1574 605 962 267 

Table 8. Counts for the East Midlands 

Sl S2 S3 S4 Males, 
young 

Females, 
young 

Males, 
old 

Females, 
old 

1 0 0 0 299 66 81 14 
0 1 0 0 205 8 35 0 
1 1 0 0 31 * 0 0 
0 0 1 0 1769 651 749 220 
1 0 1 0 226 64 51 9 
0 1 1 0 60 * 13 0 
1 1 1 0 26 * 6 0 
0 0 0 1 308 72 80 9 
1 0 0 1 37 7 6 0 
0 1 0 l 21 0 * 0 
1 1 0 1 8 * * 0 
0 0 1 1 267 64 73 16 
1 0 1 1 80 21 16 * 
0 1 1 1 21 * * 0 
1 1 1 1 7 * 0 * 

Total 3365 963 1117 272 

to have a significant effect on the estimated population sizes, as noted above, yet did generally 
improve the goodness of fit to the observed data. 

Estimating the number of IDUs and the injecting DRD rate i.s an inherently difficult problem 
as injecting is an ostracized behaviour and yet injectors have a clear social and economic effect 
within society. The use of data from capture—recapture studies for estimating such hidden 
populations has a long history. The use of log-linear models is appealing because of their direct 
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Table 9. Counts for London 

5'1 S, S3 S4 Males, 
young 

Females, 
young 

Males, 
old 

Females, 
old 

1 0 0 0 121 30 125 20 
0 1 0 0 127 33 90 6 
1 1 0 0 7 * 5 0 
0 0 1 0 1554 752 2582 789 
1 0 1 0 28 14 44 5 
0 1 1 0 33 6 23 8 
1 1 1 0 8 * 0 0 
0 0 0 1 557 144 397 84 
1 0 0 1 16 5 12 * 
0 1 0 1 21 5 11 * 
1 1 0 1 * * * 0 
0 0 1 1 184 62 171 37 
1 0 1 1 8 * 11 
0 1 1 1 20 * 19 * 
1 1 1 1 * * * * 

Total 2687 1062 3492 957 

Table 10. Counts for the North East 

S 1 S, S; 54 Males, I,i'uiales, Males, Females. 
young young old old 

1 0 0 0 228 74 47 7 
0 1 0 0 135 17 21 * 
1 1 0 0 18 * * 0 
0 0 1 0 1778 584 465 122 
1 0 1 0 242 63 35 5 
0 1 1 0 55 12 9 0 
1 1 1 0 30 9 * 0 
0 0 0 1 189 35 17 0 
1 0 0 1 24 * 0 
0 1 0 1 to * 0 0 
1 1 0 1 5 * 0 
0 0 1 1 145 35 21 
1 0 1 1 60 17 12 * 
0 1 1 1 13 * 5 0 
1 1 1 1 12 * 0 0 

Total 2944 858 643 140 

modelling (and interpretation) of interactions between the different data sources andlor covari-
ates which are likely to be present within such complex systems. The corresponding estimates 
of IDU prevalence are model dependent. We implement a model averaging approach to take 
into account both parameter and model uncertainty within the estimation of population size, 
although there can. still be dependence on the set of possible models considered. 

The estimated total IDU population size in England of approximately 200000 in 2005-2006 is 
broadly consistent with the previous estimate that was obtained by de Angelis et al. (2009) when 
investigating the prevalence of hepatitis C but has considerably less uncertainty associated with 
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Table 11. Counts for the North West 

Si S: S3 54 Males, 
young 

Females, 
young 

Males, 
old 

Ferrules, 
olrl 

1 0 0 0 390 113 238 58 
0 1 0 0 167 25 73 11 
1 1 0 0 21 * 6 0 
0 0 1 0 2736 1231 2797 775 
1 0 1 0 229 85 166 25 
0 1 1 0 52 7 21 
1 1 1 0 20 5 * 
0 0 0 1 457 144 272 54 
1 0 0 1 63 13 43 9 
0 1 0 1 31 5 9 * 
1 1 0 1 9 * * 0 
0 0 1 1 323 86 215 25 
1 0 1 1 139 32 47 8 
0 1 1 1 33 5 7 * 
1 1 1 1 8 * * 0 

Total 4678 1756 3904 971 

Table 12. Counts for the South East 

S1 S2 S3 S4 Males. Females, Males, Females, 
young young old old 

1 0 0 0 246 99 123 30 
0 1 0 0 96 24 31 
1 1 0 0 18 * * * 
0 0 1 0 1609 648 1101 322 
1 0 1 0 160 45 83 14 
0 1 1 0 43 * 13 
1 1 1 0 17 * * 0 
0 0 0 1 267 69 94 17 
1 0 0 1 11 7 5 * 
0 1 0 1 * * 0 0 
1 1 0 1 * 0 0 0 
0 0 1 1 107 33 36 8 
1 0 1 1 18 5 8 * 
0 1 1 1 5 * 0 0 
1 1 1 1 * 0 0 0 

Total 2605 940 1498 401 

it. Our analysis also provides a regional dimension, offering new insights into injecting DRD 
rates regionally, and to regional interactions between sources. 

Providing regional cross-classified estimates of IDUs and. injecting DRD rates gives more 
detailed information that may be useful in assessing the regional effect of opiate substitution 
therapy in reducing the risk of mortality. In addition, the risk of transmission for blood-borne 
viruses may be better assessed for different cross-categories at the regional level, by providing 
estimates of potential carriers. Besides providing regional estimates ofIDUs, regional differences 
in terms of the underlying interactions may be of interest because they provide insight into cross-
linkages between the different sources of data and/or covariates. 
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Table 13. Counts for the South West 

S1 S, S, S4 Males, females, Males, Females; 
young young old old 

1 0 0 0 146 35 61 6 
0 1 0 0 120 26 46 
1 1 0 0 16 0 * 0 
0 0 1 0 3151 1377 2075 659 
1 0 1 0 206 63 66 11 
0 1 1 0 90 13 18 0 
1 1 1 0 24 * 5 0 
0 0 0 1 120 21 45 
1 0 0 1 12 * 5 0 
0 1 0 1 * 0 * 0 
1 1 0 1 0 0 0 0 
0 0 1 1 159 30 73 6 
1 0 1 1 29 9 5 * 
0 1 1 1 13 * * * 
1 1 1 1 * 0 0 0 

Total 4091 1580 2405 691 

Table 14. Counts for the West Midlands 

S1 S2 S3 S4 Males, 
young 

Fenales, 
young 

stales. 
old 

Females, 
old 

1 0 0 0 277 69 77 22 
0 1 0 0 225 24 43 5 
1 1 0 0 34 * 7 0 
0 0 1 0 2252 780 958 259 
1 0 1 0 239 36 58 11 
0 1 1 0 92 9 10 * 
1 1 1 0 53 6 6 * 
0 0 0 1 312 67 68 11 
1 0 0 1 44 7 15 0 
0 1 0 1 37 5 * * 
1 1 0 1 10 * * * 
0 0 1 1 199 45 59 13 
1 0 1 1 68 15 21 
0 1 1 1 23 8 * 0 
1 1 1 1 21 * * 0 

Total 3886 1081 1332 328 

Owing to the structure of the data, which allows for age group and gender as covariates, 
population estimates can be obtained at these lower cross-classification levels within each 
region and permit the identification of more complex underlying structure and/or patterns. For 
example, for both male and female IDUs in the North East, an unusually high proportion are 
younger individuals (15-34 years) with posterior means for the ratio of younger to older IDUs 
greater than 4 (see Table 4). We also note that, consistently within each region, and aggregated 
to the England level, the younger-to-older ratio is higher for females than for males, indicating 
that a larger proportion of younger IDUs are female than of older IDUs. The higher proportion 
of younger female IDUs was also observed by King, Bird, Hay and Hutchinson (2009) within 
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Table 15. Counts forYorkshire and Humber 

Si S`: S3 54 Males, Females, Males, Ferrules, 
young young old olrl 

1 0 0 0 372 139 133 24 
0 1 0 0 196 23 43 * 
1 1 0 0 18 9 * 0 
0 0 1 0 3604 1481 1388 378 
1 0 1 0 364 109 95 20 
0 1 1 0 99 13 14 * 
1 1 1 0 36 7 * * 
0 0 0 1 676 193 174 28 
1 0 0 1 100 16 27 6 
0 1 0 1 41 9 5 * 
1 1 0 1 10 * 0 0 
0 0 1 1 538 150 144 28 
1 0 1 1 281 58 46 5 
0 1 1 1 52 * 8 
1 1 1 1 26 9 7 0 

Total 6413 2221 2089 498 

Scotland. We note that, in this analysis, the capture-recapture data for each region were assumed 
to be independent of each other. It is possible to consider a single integrated analysis with the 
region itself as a categorical covariate within the analysis, with each level of the covariate 
corresponding to each region, and. once more allowing interactions between the different 
sources or covariates and region. This may potentially allow the borrowing of information across 
the regions and is an area of current research. 

The estimates of IDU prevalence can be combined with the number of injecting DRDs to 
obtain the injectors' drug-related risk of mortality. Within our analysis, we take the number of 
injecting DRDs to be the average annual number of HRDs in each region which occurred over 
the 4-year period 2004-2007. There is additional potential heterogeneity in terms of identify-
ing and reporting illicit drugs in post-mortem examinations. The numbers of HRDs are used 
both for constructing a prior for the total population size and in calculating the injecting DRD 
rate, by combining the number of HRDs with the estimated number of IDUs. It is possible to 
consider adding a further level of uncertainty to the number of HRDs per region. This would 
widen the prior interval specified on the total population size but would have little effect on 
the posterior estimates of prevalence of IDUs since the posterior distributions are largely data 
driven (although doing so may create greater overlaps between the prior and posterior estimates 
of population size). Additionally, for each region, assuming a Poisson or negative binomial. 
distribution, say, for the annual number of HRDs (with mean equal to the annual mean 
number of HRDs) would result in essentially the same posterior mean for the injecting DRD 
rate (assuming that the posterior distributions for the total population sizes are unchanged), but 
with a wider credible interval to reflect the additional level of uncertainty that is incorporated. 

The generally lower injecting DRD rates for England than in Scotland (King, Bird, Hay and 
Hutchinson, 2009) suggests that Scotland may have something to learn from the cross-linkages 
that England has put in place. Discussion of regional source x source interactions with regions' 
criminal justice or drug treatment practitioners may shed further light on regional implications 
when local expertise is brought to bear on their interpretation. This analysis appears to offer a 
broad reassurance that criminal justice and drug treatment interventions are working together. 
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However, there are concerns also—particularly for those regions in which injector ratios by age 

group (15---34 to 35-64 years) are h.igh and thereby suggest an. unwelcome preponderance of 
younger injectors, which means that greater resistance to injecting needs to be engendered in 
their young people. 
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MC_U_A030_0007/O1), AMO was funded by, and RK partly funded by, the Medical Research 
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addiction harm'). 

Appendix A: Data 

The observed contingency tables for each region, cross-classified by gender and age, are provided in Tables 
7-15. The four sources correspond to S1. probation data, S2. DIP prison assessments. S3, drug treatment 
data, and S4. DIP community assessments. 

Small observed cell sizes (i.e. cell entries with values 1-4) have been replaced by asterisks to comply with 
the Home Office request relating to avoiding potential. deductive disclosure. 

An alternative parameterization of the model specifies the total cell counts for each gender x age group 
as explicit model parameters. Such a parameterization may be desirable if expert prior information is 
available at this level and the data themselves are not sufficiently informative. The corresponding log-
linear parameters are the main effect terms for each source and two-way interactions for source x source 
and source x covariate combinations (the covariate-only log-linear parameters relating to main effect 
covariate terms and covariate x covariate interaction term are no longer strictly estimable). We let N = 
{N(g,a) :,g E {M, F}, a E { 15---34,35--64}} and pkl(4,a) denote the probability that an individual is observed 
in cell k e {0, 1 }4, conditional on being of gender g in age group a. The saturated log-linear model (up to 
two-way interactions) for the conditional cell probabilities is given by 

Sj S C 4 S A 
Pk I(g, a) «ex( ~ Bk(i) + Bk(i), k(/) + 4  Bk(i), g +

i-1 i=1j=i+i i=1 i=1 

In addition, letting n(g, a) = {n(s, a):k : k e {0, 1}4}, for each combination of gender g and age group a, 

n(g, a) I N(g, a), Bm — multinomial(N(y, a), P(g, a)), 

where p(g, a) = {pkl(g, a) : k e {O, 1 } 4}. The posterior distribution of the model parameters is given by 

"(N, 0 m I lobs) « J (nobs N, O,)p(N, Om) 

« 1 II f( n (s, )I N(.9, a), Urn) ~ p(N, Urn) 
F} ac{ 15-33 4, 35-64} 

7'7 

JJ

a r7 r7 ~~(g, a)1 
1 1 

pk~g. ask N 

ge{M, F} acI15-34, 35— 
p( Om)

641 n(g, a):01 ke{0, 114
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We note that the priors are specified on the total population size for each gender x age group cross-
classification, i.e. N (and typically independently of 8,,,). The corresponding MCMC algorithm would, for 
example, update each N(9, a) in turn by using a Metropolis—Hastings step (analogous to that for Ntot in 
Section 3.4.1). 

We note that prior information may not always be of the form of the total population size of each 
gender x age group cross-classification, but functions of these. For example, prior information may be 
available on the total population size, male-to-female ratio (denoted R) and the proportion of'males (and 
females) that are young (denoted by P1 and P2 respectively). Prior information of this form can be incor-
porated in this model parameterization by specifying a prior distribution on Ntot, R, P1 and P2, denoted by 
P(Ntot, R, P1, P2), and calculating the corresponding prior on the total population counts for each gender x 
age group cross-classification, denoted by p(N), using a transformation-of-variables argument. For this 
example, 

R= N(  / N(F). 

P1 = N(M, 15-34) /N(M) 

and 

P2 = N(F, 15-34) /N(F) 

Then, we can write 

d(Ntot. R, P2, P2) 
P(N) = p(N 0t R, P1. F2) dN 

where the final term corresponds to the determinant of the Jacobian. It is straightforward to show that 

d(Ntot, R, Pi, P2) 
dN 

1 N((, 15-34) N(M, 15-34) 

N(M) Y(M) N(M)

N«,t
— N .•i

1 1 N(M) No
— z— 2 

N(F) N(F) N(F) N(F)

0 0 1  N(F, 15-34) _ N(F, 15-34) 
z z N(F) N(F) N(H) 

In general, such results are easily obtained by using an algebraic computer package, such as MAPLE. 
Finally, we note that further parameterizations are possible which may be suitable for different prior 

information. For example, following on from the prior specification above, if there is expert prior informa-
tion on only Ntot and R, it is possible to express the likelihood of observed data given the total number of 
males and total number of females by using an analogous approach, conditioning on gender only (instead 
of gender and age group as above). The log-linear parameter corresponding to the main effect term for 
gender is no longer estimable, but the rest of the covariate (and source) log-linear parameters are. 

References 

de Ange is, D., Hickman, M. and Yang, S. Y. (2004) Estimating long-term trends in the incidence and prevalence 
of opiate use/injecting drug use and the number of former users: back-calculation methods and opiate overdose 
deaths. Am. J. Epidein., 160, 994-1004. 

de Angelis, D., Sweeting. M., Ades, A., Hickman, M., Dope, V. and Ramsay. M. (2009) An evidence synthesis 
approach to estimating Hepatitis C prevalence in England and Wales. Statist. iieth. Med Res., 18, 361--379. 

Beynon, C., Belli.s, M. A., Millar, T.. Meier, E, Thomson, R. and Jones, K. M. (2001) Hidden need for drug 
treatment services: measuring levels of problematic drug use in the North West of England. J. Publ. Hlth Med., 
23, 286-291. 

RLIT0001637_0026 



Estimating Prevalence of Injecting Drug Users and Heroin-related Death Rates 27 

Bloor, M., Gannon, M., Hay, G., Jackson, G., Leyland, A. H. and McKeganey, N. (2008) Contribution of 
problem drug users' deaths to excess mortality in Scotland: secondary analysis of cohort study. Br. Med. J, 337, 
article a478. 

Brooks, S. P. (1998) Markov chain Monte Carlo method and its application. Statistician, 47, 69-100. 
Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997) Model selection: an integral part of inference. 

Biometrics, 53, 603--618. 
Burnham, K. P. and Anderson, D. R. (2002) model Selection and .Viultimodci Inference. New York: Springer. 
Chao, A., Tsay, P. K., Lin, S., Shau, W. and Chao, D. (2001) The application of capture-recapture models to 

epidemiological data. Statist. Med., 20, 2123-2157. 
Cornish, R., Macleod, J., Strang, J, Vickerman, P. and Hickman, M. (2010) Risk of death during and after 

opiate substitution treatment in primary care: prospective observational study in UK General Practice Research 
Database. Br. Med. J, 341, article c5475. 

Fienberg, S. E. (1972) The multiple recapture census for closed populations and incomplete 2k contingency tables. 
Biometrika, 59, 591-603. 

Forster, J. J., Gill, R. C. and Overstall, A. M. (2012) Reversible jump methods for generalised linear models and 
generalised linear mixed models. Statist. Comput., 22, 107-120. 

Frischer, M., Leyland, A., Cormack, R., Goldberg, D. J., Bloor, M., Green, S. T., Taylor, A., Covell, R., Mc-
Keganey, N. and Platt, S. (1993) Estimating the population prevalence of injection drug use and infection 
with human immunodeficiency virus among injection drug users in Glasgow, Scotland. Arn. J Epidenn., 138, 
170-181. 

Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayen Anal., 1, 515-534. 
Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. 

Biometrika, 82, 711-732. 
Hay, G., Gannon, M., MacDougall, J., Eastwood, C., Williams, K. and Millar, T. (2009) Capture-recapture and 

anchored prevalence estimation of injecting drug users in England: national and regional estimates. Statist. 
Meth, Med. Res., 18. 323-339. 

1-iickman, M., Higgins, V., Hope, V., Bellis, M., Tilling, K., Walker, A. and Henry, J. (2004) Injecting drug use 
in Brighton, Liverpool, and London: best estimates of prevalence and coverage of public health indicators. 
.I Epidem. Commty HI/h, 58, 766-771. 

Hook, E. B., Albright, S. G. and Cross, P. K. (1980) Use of Bernoulli census and log-linear methods for estimating 
the prevalence of spina bifida in livebirths and the completeness of vital record reports in New York state. Am. 
J. Epidem., 112, 750-758. 

Hook., E. B. and Regal, R. R. (1995) Capture-recapture methods in epidemiology: methods and limitations. 
Epidem. Rev., 17, 243-264. 

Hook, E. B. and Regal, R. R. (1997) Validity of methods for model selection, ;weighting for model uncertainty, 
and small sample adjustment in capture-recapture estimation. Am. J Epidem., 145. 1138-1144. 

Hook, E. B. and Regal, R. R. (1999) Recommendations for presentation and evaluation of capture-recapture 
estimates in epidemiology. .1 Clio. Epidem., 52, 917-926. 

Hook, E. B. and Regal, R. R. (2000) On the need for a 16th and 17th recommendation for capture-recapture 
analysis..! Clin. F_pidem., 52, 1275-1277. 

Hutchinson. S. J., Taylor. A., Gruer, L., Barr, C., Mills, C., Elliott, L., Goldberg, D. J, Scott, R. and Gilchrist, 
G. (2000) On.e year follow-up of opiate injectors treated with oral methadone in a GP-centred programme. 
Addiction, 95, 1055-1068. 

Kass, R. E. and Raftery, A. E. (1995) Bayes factors. J. Am. Statist. Ass., 90, 773-793. 
King, R., Bird, S. M., Brooks, S. P., Hutchinson, S. J. and Hay, G. (2005) Prior information in behavioural capture-

recapture methods: demographic influences on drug injectings' propensity to be listed in data sources and their 
drug-related mortality. Am. J. Epidem., 162, 694-703. 

King, R., Bird, S. M., Hay, G. and Hutchinson, S. J. (2009) An update on the estimation of the prevalence of 
injector-drug users in Scotland via capture-recapture methods. Statist. 1tleth. Med Res., 18, 341-359. 

King, R. and Brooks, S. P. (2001a) On the Bayesian analysis of population size. Biometrika, 88, 317-336. 
King, R. and Brooks, S. P. (2001b) Prior induction in log-linear models for general contingency table analysis. 

Ann. Statist., 29, 715-747. 
King, R., Morgan, B. J. T., Gimenez, O. and Brooks, S. P. (2009) Bayesian Analysis fbr Population Ecology. Boca 

Raton: CRC Press. 
Madigan, D. and York, J. C. (1997) Bayesian methods for estimation of the size of a closed population. Biometrika, 

84, 19-31. 
Mastro, T. D., Kitayaporn, D. and Weniger, B. G. (1994) Estimating the number of HIV-infected injection drug 

users in Bangkok: a capture-recapture method. Am. J. Publ. Hlth, 84, 1094-1099. 
Merrall, E. L. C., Bird, S. M. and Hutchinson, S. J. (2012) Mortality of those who attended drug services in 

Scotland 1996-2006: record linkage study. Int. J. Drug Poly, 23, 24-32. 
Millar, T., Gemmel, I., Hay, G., Heller, R. E and Donmall, M. (2006) How well do trends in incidence of heroin 

use reflect hypothesised trends in prevalence of problem drug use in the North West of England? Addn .Res. 
Theor., 14, 537-549. 

RLIT0001637_0027 



28 R. King, S. M. Bird, A. M. Overstall, G. Hay and S. J. Hutchinson 

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from capture data on 
closed animal populations. Widlf Monogr., 62, 1-135. 

Papathomas. M., Dellaportas, P. and Vasdekis, V. G. S. (2011) A novel reversible jump algorithm for generalized 
linear models. Biometrika, 98, 231-236. 

Singleton, N., Murray, R. and Tinsley, L. (eds) (2006) Measuring different aspects of problem drug use: method-
ological developments. Online Report 16106. Home Office, London. 

Skodbo, S., Brown, G., Deacon, S., Cooper, A., Hall, A., Millar, T., Smith, J. and Whitham, K. (2007) The Drug 
Intervention Programme (DIP): addressing drug use and offending through Tough Choices'. Research Report. 
Home Office, London. 

Strang, J., Hall, W, Hickman, M. and Bird. S. M. (2010) Impact of supervision of methadone consumption on 
deaths related to methadone overdose (1993-2008): analyses using OD4 index in England and Scotland. Br. 
Med 1,341, article c4851. 

Strang, J., Manning, V., Mayet, S., Ridge, G., Best, D. and Sheridan, J. (2007) Does prescribing for opiate addiction 
change after national guidelines?: methadone and buprenorphine prescribing to opiate addicts by general 
practitioners and hospital doctors in England, 1995-2005. Addiction, 102, 761-770. 

Tilling, K. and Sterne, J. A. C. (1999) Capture-recapture models including covariate effects. Am. J. Epidem., 149, 
392-400. 

Tilling, K., Sterne, J. A. C. and Wolfe, C. D. (2001) Estimation of the incidence of stroke using a capture-recapture 
model including covariates. Int. J. Epidem., 30, 1351-1359. 

RLIT0001637_0028 


